Development and application of devices based on surface plasmon resonance
The purpose of the paper is to present the development of “Plasmontest” series devices that can be used for laboratory applications, as portable field-research devices and to carry out a comparison of optical circuits of SPR devices, their capabilities and operational characteristics during biochemi...
Gespeichert in:
Datum: | 2020 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | English |
Veröffentlicht: |
Інститут кібернетики ім. В.М. Глушкова НАН України
2020
|
Schriftenreihe: | Кібернетика та комп’ютерні технології |
Schlagworte: | |
Online Zugang: | http://dspace.nbuv.gov.ua/handle/123456789/168596 |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Zitieren: | Development and application of devices based on surface plasmon resonance / T.S. Lebyedyeva, Y.D. Minov, P.G. Sutkovyi, Y.O. Frolov, P.B. Shpylovyy, M.F. Starodub // Кібернетика та комп’ютерні технології: Зб. наук. пр. — 2020. — № 1. — С. 62-73— Бібліогр.: 16 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-168596 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1685962020-07-14T01:29:08Z Development and application of devices based on surface plasmon resonance Lebyedyeva, T.S. Minov, Y.D. Sutkovyi, P.G. Frolov, Y.O. Shpylovyy, P.B. Starodub, M.F. Інформаційні технології: теорія та інструментальні засоби The purpose of the paper is to present the development of “Plasmontest” series devices that can be used for laboratory applications, as portable field-research devices and to carry out a comparison of optical circuits of SPR devices, their capabilities and operational characteristics during biochemical and physical experiment. Мета статі. Показати розробку ППР-пристроїв серії «Плазмонтест», які можуть бути використані для лабораторних застосувань, і в якості портативних приладів для польових досліджень. Провести порівняння оптичних схем ППР-приладів, їх можливостей і експлуатаційних характеристик при біохімічному і фізичному експерименті. Цель статьи. Показать разработку ППР-устройств серии «Плазмонтест», которые могут быть использованы для лабораторных применений и в качестве портативных приборов для полевых исследований. Провести сравнение оптических схем ППР-приборов, их возможностей и эксплуатационных характеристик при биохимическом и физическом эксперименте. 2020 Article Development and application of devices based on surface plasmon resonance / T.S. Lebyedyeva, Y.D. Minov, P.G. Sutkovyi, Y.O. Frolov, P.B. Shpylovyy, M.F. Starodub // Кібернетика та комп’ютерні технології: Зб. наук. пр. — 2020. — № 1. — С. 62-73— Бібліогр.: 16 назв. — англ. 2707-4501 DOI:10.34229/2707-451X.20.1.7 http://dspace.nbuv.gov.ua/handle/123456789/168596 535.016 en Кібернетика та комп’ютерні технології Інститут кібернетики ім. В.М. Глушкова НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
topic |
Інформаційні технології: теорія та інструментальні засоби Інформаційні технології: теорія та інструментальні засоби |
spellingShingle |
Інформаційні технології: теорія та інструментальні засоби Інформаційні технології: теорія та інструментальні засоби Lebyedyeva, T.S. Minov, Y.D. Sutkovyi, P.G. Frolov, Y.O. Shpylovyy, P.B. Starodub, M.F. Development and application of devices based on surface plasmon resonance Кібернетика та комп’ютерні технології |
description |
The purpose of the paper is to present the development of “Plasmontest” series devices that can be used for laboratory applications, as portable field-research devices and to carry out a comparison of optical circuits of SPR devices, their capabilities and operational characteristics during biochemical and physical experiment. |
format |
Article |
author |
Lebyedyeva, T.S. Minov, Y.D. Sutkovyi, P.G. Frolov, Y.O. Shpylovyy, P.B. Starodub, M.F. |
author_facet |
Lebyedyeva, T.S. Minov, Y.D. Sutkovyi, P.G. Frolov, Y.O. Shpylovyy, P.B. Starodub, M.F. |
author_sort |
Lebyedyeva, T.S. |
title |
Development and application of devices based on surface plasmon resonance |
title_short |
Development and application of devices based on surface plasmon resonance |
title_full |
Development and application of devices based on surface plasmon resonance |
title_fullStr |
Development and application of devices based on surface plasmon resonance |
title_full_unstemmed |
Development and application of devices based on surface plasmon resonance |
title_sort |
development and application of devices based on surface plasmon resonance |
publisher |
Інститут кібернетики ім. В.М. Глушкова НАН України |
publishDate |
2020 |
topic_facet |
Інформаційні технології: теорія та інструментальні засоби |
url |
http://dspace.nbuv.gov.ua/handle/123456789/168596 |
citation_txt |
Development and application of devices based on surface plasmon resonance / T.S. Lebyedyeva, Y.D. Minov, P.G. Sutkovyi, Y.O. Frolov, P.B. Shpylovyy, M.F. Starodub // Кібернетика та комп’ютерні технології: Зб. наук. пр. — 2020. — № 1. — С. 62-73— Бібліогр.: 16 назв. — англ. |
series |
Кібернетика та комп’ютерні технології |
work_keys_str_mv |
AT lebyedyevats developmentandapplicationofdevicesbasedonsurfaceplasmonresonance AT minovyd developmentandapplicationofdevicesbasedonsurfaceplasmonresonance AT sutkovyipg developmentandapplicationofdevicesbasedonsurfaceplasmonresonance AT frolovyo developmentandapplicationofdevicesbasedonsurfaceplasmonresonance AT shpylovyypb developmentandapplicationofdevicesbasedonsurfaceplasmonresonance AT starodubmf developmentandapplicationofdevicesbasedonsurfaceplasmonresonance |
first_indexed |
2025-07-15T03:24:08Z |
last_indexed |
2025-07-15T03:24:08Z |
_version_ |
1837681710953660416 |
fulltext |
ІНФОРМАЦІЙНІ ТЕХНОЛОГІЇ: ТЕОРІЯ ТА ІНСТРУМЕНТАЛЬНІ ЗАСОБИ
62 ISSN 2707-4501. Кібернетика та комп'ютерні технології. 2020, № 1
CYBERNETICS
and COMPUTER
TECHNOLOGIES
The purpose of the SPR sensor is to quickly and
accurately determine the refractive index of the
environment with the ability to diagnose the
presence of a specific substance. SPR devices
and biosensor diagnostic methods for laboratory
diagnostics in medicine, veterinary medicine,
determination of environmental pollution, for
food quality control are being developed. The
work is devoted to the development of devices
based on the surface plasmon resonance of the
“Plasmontest” series, which can be used for
refractometric and biosensor applications.
Comparison of optical circuits of SPR devices,
their capabilities and operational characteristics
during biochemical and physical experiment are
carried out Features of the design of devices
"Plasmontest" with discrete and aperture optical
circuits are presented. The method of approxi-
mation of the resonant SPR curve is proposed to
accurately find the value of the resonance mini-
mum. Procedures for normalizing and calibra-
tion of devices have been developed to improve
measurement accuracy. The use of "Plasmon-
test" devices for refractometry, for the develop-
ment of thin-film technological processes and for
the creation of methods of immunosensory detec-
tion of a number of bacteria and toxins is de-
scribed. Work on the creation of “Plasmontest”
series devices has shown the possibility of creat-
ing portable SPR devices for refractometric
studies, thin film studies and biosensor studies.
Keywords: surface plasmon resonance, sensor,
refractometer, biosensor.
T.S. Lebyedyeva, Y.D. Minov,
P.G. Sutkovyi, Y.O. Frolov,
P.B. Shpylovyy, M.F. Starodub, 2020
UDC 535.016 DOI:10.34229/2707-451X.20.1.7
T.S. LEBYEDYEVA, Y.D. MINOV, P.G. SUTKOVYI,
Y.O. FROLOV, P.B. SHPYLOVYY, M.F. STARODUB
DEVELOPMENT AND APPLICATION OF DEVICES
BASED ON SURFACE PLASMON RESONANCE
Introduction. In recent years, the number of papers de-
voted to the effect of surface plasmon resonance (SPR)
and development of sensors based on it has been steadily
growing. This suggests that studies based on the SPR
method are of great interest both from a physical point of
view and for various practical applications. The purpose
of the SPR sensors is to quickly and accurately determine
the refractive index of the medium and/or diagnose the
presence of a particular substance by changing the optical
characteristics of a thin layer adjacent to the surface of the
SPR sensor. In comparison with the classical methods, the
SPR method provides possibility to observe kinetics of the
biochemical reactions in-situ. A little cost of equipment,
short time of analysis using the SPR method (less than a
hour), the small number of reactants, makes SPR econom-
ically attractive for a clinical analysis. SPR devices and
biochemical diagnostic methods have been developed for
laboratory diagnostics in medicine, veterinary medicine,
determination of environmental pollution, and food quali-
ty control [1–6]. Technologies are being developed to cre-
ate portable SPR sensors to meet the growing demands for
the identification of dangerous toxins and the detection of
pathogenic microorganisms in regions that have not ac-
cess to expensive laboratory equipment.
Currently developed as sophisticated analytical SPR
sensors), middle-class sensors - SPR sensors of "Plasmon"
series and portable small size sensors similar to “Spreeta”
family of sensors, first developed and manufactured by
Texas Instruments, USA.
This work is devoted to the development of SPR devic-
es of the “Plazmontest” series, which can be used both for
laboratory applications and as portable devices for out-
door research. Features of it design, development of pro-
cedures for normalizing and calibrating instruments with
an aperture optical scheme and some features of software
development are presented.
1. Background of SPR method
The implementation of the SPR sensor requires the
presence of a p-polarized light source, a light recording or
light distribution device, a plasma-supporting metal film,
typically gold, tens of nanometers thick, and the ability to
manipulate by the wavelength of light or the angle of in-
cidence light on the metal film.
https://doi.org/10.34229/2707-451X.20.1.7
DEVELOPMENT AND APPLICATION OF DEVICES BASED …
ISSN 2707-4501. Cybernetics and Computer Technologies. 2020, No.1 63
At SPR studies on monochrome light, the light reflection dependence (SPR curve) from the SPR sub-
strate is measured under conditions of complete internal reflection. The presence of SPR reveals as the
minimum reflection at some resonant angle of incidence light
SPR , included in the equation
'
'
( )
sin
( )
c
d SPR
c
(1)
where ' – is the real part of the complex dielectric constant ' ''( ) ( ) ( )W i of metal film,
d – is
the dielectric constant of the material underlying the deposited metal, εс – dielectric constant of the medi-
um above the metal surface.
The shape and angle minimum of the SPR curve depends on: 1) polarization, wavelength, and angle
of incidence of excited light; 2) thickness of the thin layer of metal and its complex dielectric constant and
dispersion; 3) dielectric constant of the layers adjacent to the metal; 4) dielectric constant of the environ-
ment. At the SPR studies, any changes that affect SPR can be detected. Therefore, the range of tasks that
can be solved by SPR sensors are very wide – the study of thin metal and dielectric films, refractometry of
liquids and gases, diagnostics of a specific substance-analyte joining to the surface of receptor layer on
sensor substrate, in-situ studying of kinetics of biochemical reactions.
A large number of different SPR devices already created. SPR refractometers are precise instruments
for measuring refractive indices of liquids and gases, ensuring accuracy of measurements up to the 5th –
6th decimal point. The method has a record sensitivity for detecting changes in layers adjacent to a metal
film, exactly where the receptor-molecules interact with the analyte molecules. Typically, an SPR biosen-
sor has a detection limit on the order of 10 pg/mL.
At the angular studies of SPR, the dependence of the reflection coefficient from the angle of incident
light near the minimum of SPR is experimentally determined. The view of the SPR curve is shown in
fig. 1 on the left – it shows SPR curves taken at different times during the adsorption of the analyte. The
chart is rotated 90 degrees anticlockwise so the axis of the angles is vertical. To study bimolecular inter-
actions, builds the dependence of the resonance angle on time – a sensorgram, which is shown in fig. 1,
on the right.
The main tasks at the creation of SPR devices are the design of optical and electronic parts, the de-
velopment of possibilities to increase the sensitivity and resolution of SPR sensors, the development of
mathematical and software methods for accurate determination of the angle of SPR.
FIG. 1. The principle of sensorgram obtaining
T.S. LEBYEDYEVA, Y.D. MINOV, P.G. SUTKOVYI, Y.O. FROLOV, P.B. SHPYLOVYY, M.F. STARODUB
64 ISSN 2707-4501. Кібернетика та комп'ютерні технології. 2020, № 1
2. Designing devices of the “Plazmontest” series
The team of authors has developed and manufactured a series of devices under the general name
"Plasmontest", which are used in refractometric and biochemical studies, as well as in the development of
thin-film technology of sensor substrates for SPR sensors and metal clad waveguide (MCWG) sensors
based on layers of metals and oxides [7–16].
2.1. "Plasmontest – Lab" device.
The first was designed and manufactured a computerized device "Plasmontest-Lab" for laboratory
studies on the basis of a stationary semi-cylindrical prism and a semiconductor laser with a wavelength of
635 nm with a collinear beam (fig. 2). Changing the angle of incidence of light on the substrate and the
reflected light on the radiation detector is achieved by rotating of the laser and the photodiode located on
the opposite shoulders around the longitudinal axis of the prism using a stepper motor. The range of angles
is 40° – 70°, the minimum step is 0,03 degrees. The software of the device allows to set down 10 series on
10 SPR curves, to define positions of a SPR minimum at approximation by a polynomial of the 3rd order,
to construct a sensorgram of the SPR angle from time. The device has a convenient dialog box with a
graphical representation of SPR curves and sensograms.
FIG. 2. Operation scheme of a computerized device "Plasmontest-Lab".
Due to the wide range of angles, the “Plasmontest-Lab” can be used for both gas and liquid media.
Since there are no optical factors leading to distortion of the obtained reflection curves, the ”Plasmontest-
Lab” can be used to quantify the parameters of the formed layers, for example, by the fitting method in the
Winspall program. It is used by us in development of the thin-film the technology and testing the manu-
factured substrates, as well as a refractometer with an accuracy of determining the refractive index of 10-3.
The scan time of the full range of angles at a step of 0,03 degrees is 8 minutes, that does not allow the use
of "Plasmontest-Lab" for the study of fast processes. This led to the necessity to develop SPR devices with
an aperture of the radiation beam.
2.2. Single-channel device “Plasmontest”.
The single-channel aperture-optic SPR device “Plasmontest “ was designed to be portable, taking into
account the need for field studies in veterinary or screening studies in remote areas. On this basis, the size,
weight and cost of the device were imposed. It was also decided to use a typical optical scheme with
a converging laser diode beam, which, after reflection by the surface of the SRR sensor substrate, is regis-
tered by a one-dimensional CCD line. The optical scheme of the device has been preliminary calculated in
program Zemax (fig. 3).
DEVELOPMENT AND APPLICATION OF DEVICES BASED …
ISSN 2707-4501. Cybernetics and Computer Technologies. 2020, No.1 65
a b
FIG. 3, a – optical scheme of “Plasmontest” device calculated in program Zemax, b – scheme of “Plasmontest”
device with measuring cell
CCD line ILX551A has 2048 pixels. Microprocessor unit controls a light source, captures data from a
CCD line, processes measurement data, displays results and exchanges data with a computer.
CCD lines have a number of parameters restricting sensitivity threshold and other technical character-
istics. It is the dark current in the first place and its dependence on the sensor’s temperature, and the fixed
pattern noise. It is possible to get rid of such drawbacks by processing the black pixels data and reading
out CCD lines while there is no useful signal, and by further subtracting a “mask” to eliminate parasite
signals from a frame. Microprocessor’s software is specifically intended for such purposes. Each meas-
urement implies multiple readouts of a CCD line with 100 Hz frequency with on/off sequence of an irradi-
ator. Apart from the informative 2048 pixels, CCD line has service (including black and blank) pixels. In
addition, a CCD line can accumulate parasite charge in cell pixels within the time frames between meas-
urement cycles and cannot remove it completely with one readout cycle. Therefore an informative cycle is
preceded by a number of blank readout cycles of CCD line. Algorithm of a measurement cycle implies 20
blank readout signals of CCD line, 15 readout cycles of black pixels without turning on an irradiator and
32 informative readout cycles of CCD line with on/off sequence of an irradiator. Resulting data array of
CCD line is thus formed by averaging the difference between data for an irradiator in ON and OFF posi-
tion and subtracting an average value of a black pixel signal. Amount of the exposure is determined by a
period of time of an irradiator in ON position and can be established by an operator, or its optimum
amount can be established during the automatic launch procedure of the device.
Unequal distribution of the radiation across angles of irradiator’s beam is compensated by generating
and storing in device’s memory a reference data array of CCD line without SPR signal with further ad-
justment of current measurement data arrays to the reference array.
CCD line data array remains to be rather noise- polluted even after preliminary processing is done.
Biochemical research techniques require thermal stabilization of a measurement cell because the shift
of the SPR resonance angle caused by the temperature dependence of the optical parameters on the meas-
urement environment can be compared with the anticipated result of biochemical reactions. On the other
hand, it is known that heating a CCD line by more 9 °C brings about two-times increase of its dark cur-
rent. Therefore, thermal stabilization of a measurement cell and CCD line is needed. Peltier elements are
used for this purpose. Thermal sensors measure the temperatures of measurement cell and CCD line while
microcontroller system closes a feedback sustaining the temperature. Precisions are – 0,1C and 1C for a
measurement cell and for CCD line accordingly.
Major characteristics of “Plasmontest”:
Length of radiation wave: 660 – 680 nm,
Range of measurement angles: 60 degrees – 70 degrees,
Variation of convergence angles: ± 4 degrees,
T.S. LEBYEDYEVA, Y.D. MINOV, P.G. SUTKOVYI, Y.O. FROLOV, P.B. SHPYLOVYY, M.F. STARODUB
66 ISSN 2707-4501. Кібернетика та комп'ютерні технології. 2020, № 1
Resolution: 0,005 degrees/pixel,
Time of exposure: 5,5 ms – 8 ms,
Minimum time span between measurements: 1 s,
Weight of the device: 0,5 kg.
User interface software, apart from the ability to record SPR curves and a sensogram by the minimum
of a resonance curve, can also work in the mode of the constant angle which differs from the mode of the
resonance angle by the way the data are processed. Therefore, these modes can be changed or used simul-
taneously both in the process of measurement and for the data being recorded.
It should be noted that the “Plasmontest” device has received the State certification as a refractometer
in the range of refractive indexes with accuracy 1·10-3 of refractive index unit [7–8].
2.3. “Plasmontest-2L” device.
Thus, SPR studies are sensitive to the temperature drift of the signal. This problem can be solved by
either a thermostabilizing cell (as described above for the “Plasmontest” device) or by using a parallel ref-
erence channel as described below for “Plasmontest-2L” device.
The construction of a dual-channel SPR device involves splitting the light beam to 2 parts, each of
which passes through its segment of the measuring cell and separately detecting by 2 lines of photodiodes.
The simplest technical solution for the construction of the detector part is using of two-dimensional pho-
todiode matrix. Such matrixes are offered by the Hamamatsu group. But widespread use of two-
dimensional matrixes is limited due to it expensiveness. Thus, one-dimensional photodiode lines were
used. The ILX551 photodiode line has a size of 41.6 x 10 mm, so placing two lines nearby using translu-
cent mirrors requires a sophisticated optical system. This problem was solved in another way, illustrated
in fig. 4.
5
a
1
3 a
3 b
5 b
42
FIG. 4. Schematic representation of splitting of light beam to 2 photodiode lines: 1 – LED; 2 – light beam;
3a, 3b –measuring cells; 4 – system of mirrors; 5a, 5b – photodiode lines
A wide light beam is formed from the light source, passing through 2 separate measuring cells simul-
taneously. Further, the light beam falls on two sides of a triangular prism, which are placed at the angle to
the optical axis of the light beam. Each of the halves of the light beam is reflected in its direction and gets
on its photodiode line, which are spatially spaced.
Advanced software tools allow to read and process signals from two CCD lines. Both CCD lines have
clock and control pulses in parallel, ensuring simultaneous readout. ADC conversions are also started syn-
chronously and their data is read by the microcontroller in series. Both CCD sensors are connected to a
single line of single-wire interface of temperature sensors.
Like the single-channel “Plazmontest” instrument, the electric circuit includes modules for stabilizing
the radiation power of an LED with a reference channel and a module for thermal stabilization of CCD
arrays and measuring cell.
The SPR methodology of investigations by the “Plasmontest-2L” instrument involves the preliminary
recording of the reflection curves of each of the two CCD lines without liquid in the measuring cell, the
storage of the data in the device memory, and further normalization of the measurement results using these
reference curves.
DEVELOPMENT AND APPLICATION OF DEVICES BASED …
ISSN 2707-4501. Cybernetics and Computer Technologies. 2020, No.1 67
At the recording both the reference and measuring SPR curves, the same algorithm for reading both
CCD lines is used. A spurious charge accumulates between the measurement cycles in the pixels of the
CCD lines. To remove it, at the beginning of each measurement cycle, the CCDs are readout 12 times
without saving the data when the radiation is off. Thereafter, 32 reads are performed alternately, by
switching the emitter on once. Depending on whether or not the light source was switched on at the previ-
ous reading, the current reading data is either added to previously accumulated or subtracting. This proce-
dure minimizes the impact of illumination from exterior sources. The on time status determines the dura-
tion of the exposure. (Total exposure time is determined by the length of time the light source 's state is
turned on). After dividing by 16, we have an average array of data for each CCD line with the maximum
filtered signal that is transmitted for further analysis to the PC user interface.
3. Features of software development for “Plasmontest” series instruments
3.1. Development of a procedure for calculating the SPR minimum angle
For the realization of modern SPR sensors besides optical, electronical and technological problems it
is necessary to solve the problems of information processing, in particular, the definition of the reflection
curve minimum in the presence of the background noise.
The determining of the angle of reflected curve minimum using CCD-line was considered. Experi-
ments show that data array obtained by CCD array is quite noisy even after pretreatment by averaging of
16 measurements. Therefore, for accurate determination angle of the minimum the mathematical approxi-
mation around reflective curve minimum is required.
In the first stage the minimum point region searching procedure is carrying out. Thus the 16 pixels
with the lowest values of signal are determining. And then average meaning of the pixel number which is
corresponding to center of a minimum could be calculated. The next stage is the construction of approxi-
mating polynomials, and deducting the exact minimum of SPR curve.
Polynomial approximation of 2nd order gives better results on the average deviation of minimum an-
gle. But due to asymmetry of SPR-curve in the minimum region it inaccurately describes itself SPR-curve
and therefore distorts the absolute value of the minimum angle. It was therefore chosen polynomial ap-
proximation of order 3 for 300 points, which takes into account asymmetry of SPR-curve and gives the
best average deviation of angle minimum.
The next stage is the construction of approximating polynomials and deducting the exact minimum of
SPR dependence. The problem reduces to finding the coefficients of third order polynomial for a sequence
of N points, n = 1, ..., N, for fixed x and N. Since nx and N are fixed, we can get a fixed sequence of
points xNxxn )1...(,0~ in calculating of the value 1x from the sequence of nx .To find the approx-
imating polynomial coefficients it is appropriate to use the Gaussian method of least squares, using which
you can obtain the system of equations for the coefficients of the polynomial.
As a result we obtain the following algorithm for the minimum calculation for the microcontroller of
SPR device:
Calculation of sums in one cycle:
1
1
N
n
n
ys
,
2
1
( 1)
N
n
n
x n ys
,
2
3
1
( ( 1))
N
n
n
x n ys
,
3
4
1
( ( 1))
N
n
n
x n ys
. (2)
T.S. LEBYEDYEVA, Y.D. MINOV, P.G. SUTKOVYI, Y.O. FROLOV, P.B. SHPYLOVYY, M.F. STARODUB
68 ISSN 2707-4501. Кібернетика та комп'ютерні технології. 2020, № 1
Calculation of coefficients of the polynomial:
10 11 1 12 2 13 1;b a N a s a s a s
20 21 1 22 2 23 1;c a N a s a s a s
30 31 1 32 2 33 1.d a N a s a s a s (3)
where ika~ are the constants (previously calculated coefficients of
1A matrix).
Calculation of the polynomial extrema by 1st derivative
22 3P x b cx dx . (4)
2
0
3
.
3
c c db
x
d
(5)
Choice of the minimum from the condition that the 2nd derivative of the polynomial is greater than
zero: 0~3 min xdc .
Consideration of the initial minimum shift:
min min 1.x x x (6)
This algorithm uses 5N +14 additions, 3N +15 multiplications, 1 division and 1 square root extraction,
and also requires 28 bytes of RAM (when using variables with floating point single-precision). Experi-
mental studies have shown the effectiveness of the procedure of approximation – the absolute error of the
angle decreases from 0,005 to 0,001 degrees.
3.2. Development of procedures for normalization and calibration of the device with aperture opti-
cal circuit.
One of the features of aperture devices is the presence of the initial inhomogeneity of the angular dis-
tribution of light incident on the CCD. This inhomogeneity is the angular distribution of the light source
intensity, in our case, of laser Hamamatsu photonics™ light emitting diode L6108, which distorts the look
of the SPR-curve and makes inconvenience in the measurement process (fig. 5, a). To counteract this fac-
tor, a normalization procedure was applied. The normalization criterion is to obtain a straight line on the
angular distribution of intensity (fig. 5, b), whereby the SPR curve has a canonical shape, convenient for
further processing (fig. 5, c).
As can be seen from fig. 3, a, the dependence of the pixel number on the angle of incidence for this
device is non-linear. The analytical expression of the dependence has a complex appearance, involving
trigonometric functions, both direct and inverse, and the parameters of the elements of the optical system.
Therefore, the method of calibration of the device is a subject of research.
A common unit in biosensor SPR measurements is the angle of resonance minimum shift, and the cal-
ibration of these devices must be carried out in angular units. In general, such techniques are based on the
finding of distribution function of angular units over the operating range of the device. Nonlinearity of
such a distribution makes necessary to find base points using liquids with a known refractive index. Theo-
retical values of the SPR minimum angles for a set of such liquids are put in accordance with expe-
rimentally determined pixel numbers of the CCD line corresponding to the SPR minimum for each of the
liquids.
DEVELOPMENT AND APPLICATION OF DEVICES BASED …
ISSN 2707-4501. Cybernetics and Computer Technologies. 2020, No.1 69
a b
c d
FIG. 5. Procedures of normalization and calibration of “Plasmontest” device with aperture optic scheme
For this purpose, a set of certified refractive index measures based on ethylene glycol solutions was
created. With the sequential introduction of these liquids into the measuring cell of the “Plasmontest” de-
vice, a stepwise shift of the resonance minimum is observed on the sensorgram, which corresponds to a
change in the refractive index (fig. 5, d). The construction of the pixel/angle dependence is then performed
and an approximating polynomial is selected according to the criterion of minimum error. This polynomial
is introduced into the dialog program of the device and is further used by the software in the measure-
ments, providing interpolation within the working range of the device.
T.S. LEBYEDYEVA, Y.D. MINOV, P.G. SUTKOVYI, Y.O. FROLOV, P.B. SHPYLOVYY, M.F. STARODUB
70 ISSN 2707-4501. Кібернетика та комп'ютерні технології. 2020, № 1
4. Applications of “Plasmontest” devices
Instruments of “Plazmontest” series are used for a wide variety of studies.
So, the “Plazmontest-Lab” instrument, which has a wide range of working angles, is successfully used
for testing thin-film structures during the development of thin-film technologies. Using it, we investigated
the effect of gold film deposition and annealing on sensor substrates, the effects of adhesive and coating
layers of multilayer thin-film sensor structures, the formation of anode oxides, both continuous and po-
rous, for sensor substrates Al-Al2O3, Al-Nb2O5, Al- porous Al2O3, Nb-Au-Nb2O5. “Plazmontest-Lab” was
also used in-situ in the manufacture and study of transparent conductive nanosets of aluminum.
To test the characteristics of nanostructured Al-porous Al2O3 coatings directly in the process of sub-
strate manufacturing using the already proven technology, we used the device “Plasmontest”, which has a
high speed (recording time of reflection curve – 1 sec) and allows you to quickly stop the process when
the specified parameters of the nanostructured layer are reached [9–11].
The “Plasmontest” device is being piloted at the National University of Life and Environmental Sci-
ences of Ukraine. It is used to develop techniques for a range of biosensor assays that should serve as a
basis for monitoring agricultural, food, environmental, and veterinary and medical disease diagnostics.
The device was used to work out the detection methods for Salmonella Typhimurium. “Plasmontest” de-
tection level was within 101–106 cells/ml but statistically sufficient difference of results of lays in ranges
102–106 cells/ml [12, 13].
Using the “Plasmontest” instrument, methods for detecting some mycotoxins were worked out. It is
shown that when optimizing the algorithm of the analysis, the device allows determine aflatoxin B1 in
model solutions at a level less than 10 ng/ml, which even exceeds the sensitivity of the enzyme-linked
immunoassay method. Immunobiosensory analysis of aflatoxin B1 can be performed within 10 minutes if
the transducer surface is pre-prepared, that is, the expressiveness of immunobiosensor SPR analysis with
the “Plasmontest” instrument has significant advantages over the enzyme immunoassay [14].
With the help of the instrument "Plasmontest" researches on development of optimal variants of prep-
aration of samples of blood and milk for the purpose of biosensory diagnostics of retroviral leukemia of
cattle and estimation of origin of dairy products from sick or healthy animals. It has been shown that sam-
ples prepared as serum or milk should be used for verified pathogen detection. And screening can be per-
formed with “Plasmontest” even with whole blood and milk samples [15].
Methods for analyzing spermine and spermidine polyamines as potential markers of cancer were also
developed at the “Plasmontest” instrument [16 ].
Thus, the experimental operation of the device "Plasmontest" showed the prospect of its use for ex-
panding the range of substances for diagnostics, the development of new methods of biosensor diagnos-
tics, improving the accuracy and selectivity of biosensory studies.
5. Conclusions
We have developed a series of devices based on surface plasmon resonance. These devices were
made taking into account the needs of rapid diagnostics in medicine and veterinary medicine, determina-
tion of environmental pollution, for food quality control. SPR devices with discrete and aperture optical
circuits were produced, a comparison of the instrument designs and their operational characteristics during
physical and biosensor studies was made. A method for approximating the resonance SPR curve to accu-
rately find the value of the angle of the resonance minimum is proposed. To improve the accuracy of
measurements, the standardization and calibration procedures have been developed for devices with an
aperture optical design. Some features of the developed software for “Plazmontest” devices are presented.
Successful applications of “Plazmontest” instruments for refractometry, development of thin-film pro-
cesses and for the creation of immunosensory detection methods for a number of bacteria and toxins are
described.
DEVELOPMENT AND APPLICATION OF DEVICES BASED …
ISSN 2707-4501. Cybernetics and Computer Technologies. 2020, No.1 71
References
1. Vojtovich I.D., Korsunskiy V.M. Sensors basing on the surface plasmon resonance: principles, technologies, applica-
tions. Kyiv. Stal. 2011. 532 p. (in Russian)
2. Homola J. Present and future of surface Plasmon resonance biosensors. Anal. Bioanal. Chem. 2003. 377. P. 528–539.
https://doi.org/10.1007/s00216-003-2101-0
3. Zenga Y., Hua R., Wang L. Recent advances in surface plasmon resonance imaging: detection speed, sensitivity, and
portability. Nanophotonics. 2017. 6(5). P. 1017–1030. https://doi.org/10.1515/nanoph-2017-0022
4. Zhao S.S. et. al. Miniature multi-channel SPR instrument for methotrexate monitoring in clinical samples. Biosensors
& Bioelectronics. 2015. 64. P. 664–670. https://doi.org/10.1016/j.bios.2014.09.082
5. Liu Y. et. al. Surface Plasmon Resonance Biosensor Based on Smart Phone Platforms. Sci. Rep. 2015. 5. 12864.
https://doi.org/10.1038/srep12864
6. Dorozhinskiy G.V., Maslov V.P., Ushenin Yu.V. Sensoric devices basing on surface plasmon. Kyiv. NTUU «KPI».
2016. 264 p. (in Russian)
7. Khodakovskiy M., Budnik M., Lebyedyeva T., Shpylovyy P., et. al. Development of metrological support for refrac-
tometric measurements based on surface plasmon resonance. Metrologiya ta prylady. 2017. 5. P. 25–31.
http://nbuv.gov.ua/UJRN/mettpr_2017_5_6
8. Khodakovskiy M., Budnik M., Lebyedyeva T., Shpylovyy P. et. al. Ensuring uniformity of measurements in biomedi-
cal optical devices. Metrologiya ta prylady. 2017. 1. P. 25–36. http://nbuv.gov.ua/UJRN/mettpr_2017_1_7
9. Vojtovich I.D., Byednov M.V., Lebyedyeva T.S., Shpylovyy P.B. Nanoporous anodic alumina coatings for sensory
applications. Nanosystemy, nanomaterialy, nanotehnologiyi. 2014. 12(1). P. 169–180.
10. Voitovich I.D., Lebyedyeva T.S., Rachkov O.E., Gorbatiuk O.B., Shpylovy P.B. Anodic Alumina-Based Nanoporous
Coatings for Sensory Applications. Nanoplasmonics, Nano-Optics, Nanocomposites, and Surface Studies. Edited by:
Fesenko O, Yatsenko L. Springer. 2015. P. 423–431. https://doi.org/10.1007/978-3-319-18543-9_29
11. Lebyedyeva T., Kryvyi S., Lytvyn P., Skoryk M., Shpylovyy P. Formation of nanoporous anodic alumina by anodiza-
tion of aluminum films on glass substrates. Nanosc. Res. Lett. 2016. 11(203). P. 1–11. https://doi.org/10.1186/s11671-
016-1412-y
12. Starodub N., Ogorodniichuk I., Lebedeva T., Shpylovyy P. Optical Immune Biosensors for Salmonella Typhimurium
Detection. Adv. in Biosens. and Bioel. 2013. 2(I.3). P. 39–46.
13. Starodub N., Ogorodniichuk I., Lebedeva T., Shpylovyy P. Immune biosensors based on the SPR and TIRE: efficiency
of their application for bacteria determination. Proc. SPIE 9032, Biophotonics. 2013. P.903201-903204.
https://doi.org/10.1117/12.2044648
14. Starodub M.F., Voitisitskiy V.M., Lebedeva T.S., Shpylovyy P.B. Formation of the Surface Programmed Chemical
Sites and Their Selectivity to Some Mycotoxins. Adv. Biotech. and Micro. 2017. 6(4). 555691.
http://dx.doi.org/10.19080/aibm.2017.06.555691
15. Starodub M.F., Savchuk M.V., Fedelesh-Gladynets М.І., Taran O.P. Features of sample preparation for the diagnosis
of retroviral leukemia using an immune biosensor. Biologichni systemy: teoriuya ta innovatsiyi. 2018. 287. P. 135–142.
https://doi.org/10.31548/biologiya2018.287.136
16. Prylutskyi M., Starodub N., Lebyedyeva T., Shpylovyy P. Express control of levels of polyamines by immune biosen-
sor based on SPR. VISNYK Kyivskogo natsionalnogo eniversytetu imeni Tarasa Shevchenka, Problemy regulyatsiyi
fisiologichnyh funktsiy. 2018. 1(25). P. 59–62.
Received 21.02.2020
Tetyana S. Lebyedyeva,
PhD. (tech.), senior researcher, V.M. Glushkov Institute of Cybernetics, Kyiv, Ukraine,
lebtetyana@gmail.com
Yuriy D. Minov,
PhD. (tech.), senior researcher, V.M. Glushkov Institute of Cybernetics, Kyiv, Ukraine,
Pavlo G. Sutkovyi,
PhD. (tech.), senior researcher, V.M. Glushkov Institute of Cybernetics, Kyiv, Ukraine,
Yurii O. Frolov,
Senior engineer, V.M. Glushkov Institute of Cybernetics, Kyiv, Ukraine,
https://doi.org/10.1007/s00216-003-2101-0
https://doi.org/10.1515/nanoph-2017-0022
https://doi.org/10.1016/j.bios.2014.09.082
https://doi.org/10.1038/srep12864
http://nbuv.gov.ua/UJRN/mettpr_2017_5_6
http://nbuv.gov.ua/UJRN/mettpr_2017_1_7
https://doi.org/10.1007/978-3-319-18543-9_29
https://doi.org/10.1186/s11671-016-1412-y
https://doi.org/10.1186/s11671-016-1412-y
https://doi.org/10.1117/12.2044648
http://dx.doi.org/10.19080/aibm.2017.06.555691
https://doi.org/10.31548/biologiya2018.287.136
mailto:lebtetyana@gmail.com
T.S. LEBYEDYEVA, Y.D. MINOV, P.G. SUTKOVYI, Y.O. FROLOV, P.B. SHPYLOVYY, M.F. STARODUB
72 ISSN 2707-4501. Кібернетика та комп'ютерні технології. 2020, № 1
Pavlo B. Shpylovyy,
PhD. (tech.), senior researcher, V.M. Glushkov Institute of Cybernetics, Kyiv, Ukraine,
Mykola F. Starodub,
Dr.Sc. (biol.), prof., head of department, National University of Life Environmental Sciences of Ukraine.
УДК 535.016
Т.С. Лебєдєва 1, Ю.Д. Мінов 1, П.Г. Сутковий 1, Ю.О. Фролов 1, П.Б. Шпильовий 1, М.Ф. Стародуб 2
РОЗРОБКА ТА ВИКОРИСТАННЯ ПРИЛАДІВ НА ОСНОВІ ПОВЕРХНЕВОГО РЕЗОНАНСУ
1 Інститут кібернетики імені В.М. Глушкова, Київ, Україна
2 Національний Університет Біоресурсів і Природокористування України, Київ, Україна
1 Листування: lebtetyana@gmail.com
Вступ. Призначенням ППР сенсорів є швидке і точне визначення показника заломлення середови-
ща з можливістю діагностики наявності певної речовини. Розробляються ППР пристрою і біосенсорні
методики діагностики для проведення лабораторної діагностики в медицині, ветеринарії, визначення
забруднень у навколишньому середовищі, для контролю якості харчових продуктів. Робота присвя-
чена розробці пристроїв на основі поверхневого плазмонного резонансу серії «Плазмонтест», які
можна використовувати для рефрактометричних та біосенсорних застосувань.
Мета роботи. Показати розробку ППР-пристроїв серії «Плазмонтест», які можуть бути використа-
ні для лабораторних застосувань, і як портативні прилади для польових досліджень. Провести порів-
няння оптичних схем ППР-приладів, їх можливостей і експлуатаційних характеристик при біохімічно-
му і фізичному експерименті.
Результати. Представлені особливості конструкції приладів «Плазмонтест» з дискретною і апер-
турними оптичними схемами. Запропоновано метод апроксимації резонансної ППР-кривої для точного
знаходження значення резонансного мінімуму. Для підвищення точності вимірювань розроблені проце-
дури нормування і градуювання приладів з апертурною оптичною схемою в одноканальному і двокана-
льному виконанні. Представлені деякі особливості розробленого програмного забезпечення для прила-
дів серії «Плазмонтест». Описано застосування приладів «Плазмонтест» для рефрактометрії, при відп-
рацюванні тонкоплівкових технологічних процесів і для створення методик імуносенсорного детекту-
вання ряду бактерій і токсинів.
Висновки. Робота по створенню приладів серії «Плазмонтест» показала можливість створення по-
ртативних ППР-приладів для проведення рефрактометричних досліджень, досліджень тонких плівок та
біосенсорних досліджень. Показано, що прилади з апертурною оптичною схемою є найбільш перспек-
тивними з урахуванням умов компактності, надійності та низької вартості.
Ключові слова: поверхневий плазмонний резонанс, сенсор, рефрактометр, біосенсор.
УДК 535.016
Т.С. Лебедева 1, Ю.Д. Минов 1, П.И. Сутковой 1, Ю.А. Фролов 1, П.Б. Шпилевой 1, Н.Ф. Стародуб 2
РАЗРАБОТКА И ПРИМЕНЕНИЕ УСТРОЙСТВ НА ОСНОВЕ ПОВЕРХНОСТНОГО
ПЛАЗМОННОГО РЕЗОНАНСА
1 Институт кибернетики имени В.М. Глушкова, Киев, Украина
2 Национальный Университет Биоресурсов и Природопользования Украины, Киев, Украина
1 Переписка: lebtetyana@gmail.com
Введение. Назначением ППР сенсоров является быстрое и точное определение показателя пре-
ломления среды с возможностью диагностики наличия определенного вещества. Разрабатываются ППР
устройства и биосенсорные методики диагностики для проведения лабораторной диагностики в меди-
цине, ветеринарии, определения загрязнений в окружающей среде, для контроля качества пищевых
mailto:lebtetyana@gmail.com
mailto:lebtetyana@gmail.com
DEVELOPMENT AND APPLICATION OF DEVICES BASED …
ISSN 2707-4501. Cybernetics and Computer Technologies. 2020, No.1 73
продуктов. Работа посвящена разработке устройств на основе поверхностного плазмонного резонанса
серии «Плазмонтест», которые можно использовать в рефрактометрии и биосенсорике.
Цель работы. Показать разработку ППР-устройств серии «Плазмонтест», которые могут быть
использованы для лабораторных применений и в качестве портативных приборов для полевых исследо-
ваний. Провести сравнение оптических схем ППР-приборов, их возможностей и эксплуатационных
характеристик при биохимическом и физическом эксперименте.
Результаты. Представлены особенности конструкции приборов «Плазмонтест» с дискретной
и апертурной оптической схемами. Предложен метод аппроксимации резонансной ППР-кривой для
точного нахождения значения резонансного минимума. Для повышения точности измерений разрабо-
таны процедуры нормировки и градуировки приборов с апертурной оптической схемой в одноканаль-
ном и двухканальном исполнении. Представлены некоторые особенности разработанного программно-
го обеспечения для приборов серии «Плазмонтест». Описаны применения приборов «Плазмонтест» для
рефрактометрии, при отработке тонкопленочных технологических процессов и для создания методик
иммуносенсорного детектирования ряда бактерий и токсинов.
Выводы. Работа по созданной приборов серии «Плазмонтест» показала возможность создания
портативных ППР-приборов для проведения рефрактометричним исследований, исследований тонких
пленок и биосенсорных исследований. Показано, что приборы с апертурной оптической схемой явля-
ются наиболее перспективными с учетом условий компактности, надежности и низкой стоимости.
Ключевые слова: поверхностный плазмонный резонанс, сенсор, рефрактометр, биосенсор.
|