Universal bounds for global solutions of nonlinear parabolic equations
In this survey we consider parabolic problems for which blow-up in finite time occurs for some initial data but global positive solutions may also exist. We present results on universal L∞-bounds for global positive solutions. These bounds will be of the form u(x,t) ≤ C(τ), x ∊ Ω t ≥ τ ›0, where C(...
Saved in:
Date: | 2002 |
---|---|
Main Author: | Fila, M. |
Format: | Article |
Language: | English |
Published: |
Інститут прикладної математики і механіки НАН України
2002
|
Series: | Нелинейные граничные задачи |
Online Access: | http://dspace.nbuv.gov.ua/handle/123456789/169228 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Journal Title: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Cite this: | Universal bounds for global solutions of nonlinear parabolic equations / M. Fila // Нелинейные граничные задачи. — 2002. — Т. 12. — С. 179-188. — Бібліогр.: 14 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of UkraineSimilar Items
-
Bounded Components of Positive Solutions of Nonlinear Abstract Equations
by: Cano-Casanova, S., et al.
Published: (2005) -
Bounded solutions of the nonlinear Lyapunov equation and homoclinic chaos
by: O. A. Boichuk, et al.
Published: (2019) -
On Hölder continuity of solutions of doubly nonlinear parabolic equations with weight
by: Bonafede, S., et al.
Published: (1999) -
Local sub-estimates of solutions to double phase parabolic equations via nonlinear parabolic potentials
by: Buryachenko, K.O.
Published: (2019) -
Local sub-estimates of solutions to double phase parabolic equations via nonlinear parabolic potentials
by: K. O. Buryachenko
Published: (2019)