Bifurcation and stability for diffusive logistic equations with nonlinear boundary conditions

In this note we study a semilinear elliptic boundary value problem of one parameter dependence which arises in population genetics, having nonlinear boundary conditions. For some cases of sign indefinite weights, we investigate the existence and asymptotic behavior of the minimal positive solution....

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2000
Автор: Umezu, K.
Формат: Стаття
Мова:English
Опубліковано: Інститут прикладної математики і механіки НАН України 2000
Назва видання:Нелинейные граничные задачи
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/169257
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Bifurcation and stability for diffusive logistic equations with nonlinear boundary conditions / K. Umezu // Нелинейные граничные задачи: сб. науч. тр. — 2000. — Т. 10. — С. 193-198. — Бібліогр.: 19 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-169257
record_format dspace
fulltext
spelling irk-123456789-1692572020-06-11T01:26:24Z Bifurcation and stability for diffusive logistic equations with nonlinear boundary conditions Umezu, K. In this note we study a semilinear elliptic boundary value problem of one parameter dependence which arises in population genetics, having nonlinear boundary conditions. For some cases of sign indefinite weights, we investigate the existence and asymptotic behavior of the minimal positive solution. The analysis uses the local bifurcation theory from simple eigenvalues, super-sub-solution method and variational technique. 2000 Article Bifurcation and stability for diffusive logistic equations with nonlinear boundary conditions / K. Umezu // Нелинейные граничные задачи: сб. науч. тр. — 2000. — Т. 10. — С. 193-198. — Бібліогр.: 19 назв. — англ. 0236-0497 http://dspace.nbuv.gov.ua/handle/123456789/169257 en Нелинейные граничные задачи Інститут прикладної математики і механіки НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description In this note we study a semilinear elliptic boundary value problem of one parameter dependence which arises in population genetics, having nonlinear boundary conditions. For some cases of sign indefinite weights, we investigate the existence and asymptotic behavior of the minimal positive solution. The analysis uses the local bifurcation theory from simple eigenvalues, super-sub-solution method and variational technique.
format Article
author Umezu, K.
spellingShingle Umezu, K.
Bifurcation and stability for diffusive logistic equations with nonlinear boundary conditions
Нелинейные граничные задачи
author_facet Umezu, K.
author_sort Umezu, K.
title Bifurcation and stability for diffusive logistic equations with nonlinear boundary conditions
title_short Bifurcation and stability for diffusive logistic equations with nonlinear boundary conditions
title_full Bifurcation and stability for diffusive logistic equations with nonlinear boundary conditions
title_fullStr Bifurcation and stability for diffusive logistic equations with nonlinear boundary conditions
title_full_unstemmed Bifurcation and stability for diffusive logistic equations with nonlinear boundary conditions
title_sort bifurcation and stability for diffusive logistic equations with nonlinear boundary conditions
publisher Інститут прикладної математики і механіки НАН України
publishDate 2000
url http://dspace.nbuv.gov.ua/handle/123456789/169257
citation_txt Bifurcation and stability for diffusive logistic equations with nonlinear boundary conditions / K. Umezu // Нелинейные граничные задачи: сб. науч. тр. — 2000. — Т. 10. — С. 193-198. — Бібліогр.: 19 назв. — англ.
series Нелинейные граничные задачи
work_keys_str_mv AT umezuk bifurcationandstabilityfordiffusivelogisticequationswithnonlinearboundaryconditions
first_indexed 2025-07-15T04:01:13Z
last_indexed 2025-07-15T04:01:13Z
_version_ 1837684043088396288