Wavelets and boundary value probems
Method of determination of an approximate solution of a boundary value problem for the ordinary differential equation, based on an expansion by a system of basis functions, constructed on a multiscale system of basis wavelets and satisfying given boundary conditions is described.
Gespeichert in:
Datum: | 2000 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | English |
Veröffentlicht: |
Інститут прикладної математики і механіки НАН України
2000
|
Schriftenreihe: | Нелинейные граничные задачи |
Online Zugang: | http://dspace.nbuv.gov.ua/handle/123456789/169261 |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Zitieren: | Wavelets and boundary value probems / A.D. Yunakovsky // Нелинейные граничные задачи: сб. науч. тр. — 2000. — Т. 10. — С. 213-2227. — Бібліогр.: 7 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-169261 |
---|---|
record_format |
dspace |
fulltext |
|
spelling |
irk-123456789-1692612020-06-10T01:26:23Z Wavelets and boundary value probems Yunakovsky, A.D. Method of determination of an approximate solution of a boundary value problem for the ordinary differential equation, based on an expansion by a system of basis functions, constructed on a multiscale system of basis wavelets and satisfying given boundary conditions is described. 2000 Article Wavelets and boundary value probems / A.D. Yunakovsky // Нелинейные граничные задачи: сб. науч. тр. — 2000. — Т. 10. — С. 213-2227. — Бібліогр.: 7 назв. — англ. 0236-0497 2000 Mathematics Subject Classification. 34K39, 34K44 http://dspace.nbuv.gov.ua/handle/123456789/169261 en Нелинейные граничные задачи Інститут прикладної математики і механіки НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
description |
Method of determination of an approximate solution of a boundary value problem for the ordinary differential equation, based on an expansion by a system of basis functions, constructed on a multiscale system of basis wavelets and satisfying given boundary conditions is described. |
format |
Article |
author |
Yunakovsky, A.D. |
spellingShingle |
Yunakovsky, A.D. Wavelets and boundary value probems Нелинейные граничные задачи |
author_facet |
Yunakovsky, A.D. |
author_sort |
Yunakovsky, A.D. |
title |
Wavelets and boundary value probems |
title_short |
Wavelets and boundary value probems |
title_full |
Wavelets and boundary value probems |
title_fullStr |
Wavelets and boundary value probems |
title_full_unstemmed |
Wavelets and boundary value probems |
title_sort |
wavelets and boundary value probems |
publisher |
Інститут прикладної математики і механіки НАН України |
publishDate |
2000 |
url |
http://dspace.nbuv.gov.ua/handle/123456789/169261 |
citation_txt |
Wavelets and boundary value probems / A.D. Yunakovsky // Нелинейные граничные задачи: сб. науч. тр. — 2000. — Т. 10. — С. 213-2227. — Бібліогр.: 7 назв. — англ. |
series |
Нелинейные граничные задачи |
work_keys_str_mv |
AT yunakovskyad waveletsandboundaryvalueprobems |
first_indexed |
2025-07-15T04:01:23Z |
last_indexed |
2025-07-15T04:01:23Z |
_version_ |
1837684053548990464 |