Weyl's spectral asymptotic formula for Dirichlet Kohn-Laplacian

Gespeichert in:
Bibliographische Detailangaben
Datum:1999
Hauptverfasser: Alkhutov, Yu.A., Zhikov, V.V.
Format: Artikel
Sprache:English
Veröffentlicht: Інститут прикладної математики і механіки НАН України 1999
Schriftenreihe:Нелинейные граничные задачи
Online Zugang:http://dspace.nbuv.gov.ua/handle/123456789/169265
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Weyl's spectral asymptotic formula for Dirichlet Kohn-Laplacian / Yu.A. Alkhutov, V.V. Zhikov // Нелинейные граничные задачи: сб. науч. тр. — 1999. — Т. 9. — С. 8-12. — Бібліогр.: 3 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-169265
record_format dspace
spelling irk-123456789-1692652020-06-10T01:26:25Z Weyl's spectral asymptotic formula for Dirichlet Kohn-Laplacian Alkhutov, Yu.A. Zhikov, V.V. 1999 Article Weyl's spectral asymptotic formula for Dirichlet Kohn-Laplacian / Yu.A. Alkhutov, V.V. Zhikov // Нелинейные граничные задачи: сб. науч. тр. — 1999. — Т. 9. — С. 8-12. — Бібліогр.: 3 назв. — англ. 0236-0497 http://dspace.nbuv.gov.ua/handle/123456789/169265 en Нелинейные граничные задачи Інститут прикладної математики і механіки НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
format Article
author Alkhutov, Yu.A.
Zhikov, V.V.
spellingShingle Alkhutov, Yu.A.
Zhikov, V.V.
Weyl's spectral asymptotic formula for Dirichlet Kohn-Laplacian
Нелинейные граничные задачи
author_facet Alkhutov, Yu.A.
Zhikov, V.V.
author_sort Alkhutov, Yu.A.
title Weyl's spectral asymptotic formula for Dirichlet Kohn-Laplacian
title_short Weyl's spectral asymptotic formula for Dirichlet Kohn-Laplacian
title_full Weyl's spectral asymptotic formula for Dirichlet Kohn-Laplacian
title_fullStr Weyl's spectral asymptotic formula for Dirichlet Kohn-Laplacian
title_full_unstemmed Weyl's spectral asymptotic formula for Dirichlet Kohn-Laplacian
title_sort weyl's spectral asymptotic formula for dirichlet kohn-laplacian
publisher Інститут прикладної математики і механіки НАН України
publishDate 1999
url http://dspace.nbuv.gov.ua/handle/123456789/169265
citation_txt Weyl's spectral asymptotic formula for Dirichlet Kohn-Laplacian / Yu.A. Alkhutov, V.V. Zhikov // Нелинейные граничные задачи: сб. науч. тр. — 1999. — Т. 9. — С. 8-12. — Бібліогр.: 3 назв. — англ.
series Нелинейные граничные задачи
work_keys_str_mv AT alkhutovyua weylsspectralasymptoticformulafordirichletkohnlaplacian
AT zhikovvv weylsspectralasymptoticformulafordirichletkohnlaplacian
first_indexed 2025-07-15T04:01:29Z
last_indexed 2025-07-15T04:01:29Z
_version_ 1837684059650654208
fulltext WEYL’S SPECTRAL ASYMPTOTIC FORMULA FOR DIRICHLET KOHN–LAPLACIAN c© Yu.A.Alkhutov, V.V.Zhikov 1. Introduction The counting function N(λ) = N(λ, Ω) of the Dirichlet Laplacian on a bounded open set Ω ⊂ Rd is a defined as the number of eigenvalues less than a given λ. The problem of the asymptotic behaviour of the counting function as λ → +∞ has been extensively studied by mathematicians and physicists almost 100 years. The first mathematical results in this direction belong to H.Weyl who showed in 1911 that for domains with smooth boundaries N(λ, Ω) ∼ (2π)−dωd|Ω|d/2 as λ → +∞, (1) where ωd is the volume of the unit ball in Rd. Formula (1) was then extended to arbitrary open sets in Rd with finite volume and generalized to higher-order elliptic operators with constant coeficients, see [1], [2]. Our aim is the corresponding spectral asymptotics for the Kohn-Laplacian ∆H asso- ciated to the Heisenberg group. This operator ∆H is of Hörmander type, not strongly elliptic, and invariant with respect to translations on the Heisenberg group. More ex- actly, we consider the eigenvalue problem −∆Hu = λu, u|∂Ω = 0, (2) where Ω is a bounded domain in the odd-dimensional space R2n+1, and get the asymp- totic formula N(λ, Ω) ∼ Cn|Ω|λds/2, ds = 2(n + 1). (3) The exponent ds (> d = 2n+1) depends on n and we say ds is the spectral dimension relative to our problem. 2. Preliminaries Let us recall the definition of the operator ∆H in dimension d = 3. The definitions and statements in any odd dimension d = 2n + 1 will be given later. Consider the two linear operators X1 and Y 1: X1 = ∂ ∂x + 2y ∂ ∂z , Y 1 = ∂ ∂y − 2x ∂ ∂z This research was partially supported by the Russian Foundation for Basic Research under grants No 96 - 01 - 00443 and No 96 - 01 - 00503 and introduce the gradient ∇H by ∇H = (X1, Y 1) = σ∇, where ∇ is the standard gradient: ∇ = ( ∂ ∂x , ∂ ∂y , ∂ ∂z ) , and σ is the following matrix σ = ( 1 0 2y 0 1 −2x ) . Then the operator ∆H is given by ∆H = (X1)2 + (Y 1)2 = = ∂2 ∂x2 + ∂2 ∂y2 + (4y2 + 4x2) ∂2 ∂z2 + 4y ∂2 ∂z∂x − 4x ∂2 ∂z∂y = div(σT σ∇), where σT σ =   1 0 2y 0 1 −2x 2y −2x 4y2 + 4x2   . The operator ∆H is elliptic (i.e. σT σξ · ξ ≥ 0 for any ξ ∈ R3) but clearly not strongly elliptic, because the first eigenvalue of σT σ is zero and the rank of σT σ is two in every point. However we have the following condition on commutator [X1, Y 1] = X1Y 1 − Y 1X1 = −4 ∂ ∂z . (4) As a consequence of (4), ∆H is an Hörmander type operator, and enjoys nice properties like hipoellipticity, subelliptic estimates, the maximum principle, Poincaré’s inequality. The space R3 becomes a group if the group law + define as following: for vectors ξ = (x, y, z), ξ′ = (x′, y′, z′) we set ξ′ + ξ = (x + x′, y + y′, z + z′ − 2(x′y − xy′)). Notice that ξ + ξ′ 6= ξ′ + ξ and the Lebesgue measure is invariant with respect to these right or left translations. The operator ∆H is invariant with respect to the left translations, i.e. for fixed ξ′, ∆H(u(ξ′ + ·)) = (∆H(u))(ξ′ + ·). The similar definitions can be given for any odd-dimensional space R2n+1. Let ξ = (x1, x2, . . . xn, y1, y2, . . . yn, z) = (x, y, z), where x, y ∈ Rn. Consider the operators Xj = ∂ ∂xj + 2yj ∂ ∂z , Y j = ∂ ∂yj − 2xj ∂ ∂z , j = 1, 2, . . . n, and set ∇H = (X1, X2, . . . Xn, Y 1, Y 2, . . . Y n), ∆H = n∑ j=1 (Xj)2 + (Y j)2. Then all properties of ∆H remain the same. 3. Counting function of the Dirichlet Kohn-Laplacian Let Ω be a bounded domain in R2n+1. We denote by D0 H(Ω) the closure of C∞0 (Ω) with respect to the norm   ∫ Ω |∇Hv|2dξ + ∫ Ω v2dξ   1/2 . The Poincaré inequality ∫ Ω v2dξ ≤ C(Ω) ∫ Ω |∇Hv|2dξ for any v ∈ C∞0 (Ω), and Lax-Milgram lemma give the unique solvability of the problem: { −∆Hu = f in Ω, u|∂Ω = 0, (5) where f ∈ L2(Ω), i.e. the existence and the uniqueness of a function u ∈ D0 H(Ω) such that ∫ Ω ∇Hu · ∇Hϕdξ = ∫ Ω fϕdξ for any ϕ ∈ C∞0 (Ω). Consider the collection of all the solutions of problem (5) for f varying in L2(Ω). This set is a domain of −∆H as a positive self-adjoint operator in L2(Ω). By definition we have ∫ Ω (−∆H)uϕdξ = ∫ Ω ∇Hu · ∇Hϕdξ for any ϕ ∈ D0 H(Ω). Remark that the inverse operator (−∆H)−1 is compact. It is clearly from the following subelliptic estimate: ‖ϕ‖H1/2(Ω) ≤ C   ∫ Ω |∇Hv|2dξ + ∫ Ω v2dξ   1/2 for any ϕ ∈ C∞0 (Ω), where ‖ · ‖H1/2(Ω) is the classical H1/2 norm. So for any bounded open set, the spectrum of −∆H consists of a countable sequence of positive eigenvalues λj(Ω)(j = 1, 2, . . . ): 0 < λ1(Ω) ≤ λ2(Ω) ≤ . . . ≤ λj(Ω) ≤ . . . , λj(Ω) →∞ as j →∞. Definition. Let λ be a given positive number. We denote by L(λ) = N(λ, Ω) the number of eigenvalues less than λ. The function N(λ,Ω) is called the counting function of the Dirichlet Kohn-Laplacian on Ω. Let us formulate the main result. Theorem. Assume Ω is measurable in the sense of Jordan. Then asymptotic relation (3) holds with Cn = 1 (n + 1)Γ(n + 1)(4π)n+1 ∞∫ 0 ( Θ shΘ )n dΘ, where Γ(α) is the Euler gamma-function. Clearly that it is sufficient to proof formula (3) for smooth domains Ω only. 4. Sketch of the proof We apply Carleman’s analytic aproach or ”parabolic equation method”. Let K(ξ, ξ′, t) be a fundamental solution associated to the parabolic operator ∂ ∂t −∆H . One can prove the following properties: K(t, ξ, ξ) = K(t, 0, 0) = 1 (4πt)n+1 ∞∫ 0 ( Θ shΘ )n dΘ ÷ An tn+1 (6) 0 ≤ K(t, ξ, ξ′) ≤ c1 tn+1 exp(−c2 t ρ2(ξ, ξ′)), (7) where c1, c2 > 0 and ρ(ξ, ξ′) = = [ ((x− x′)2 + (y − y′)2)2 + (z − z′ − 2(x′ · y − x · y′))2]1/4 . By G(ξ, ξ′, t) (ξ, ξ′ ∈ Ω) denote a Green function of the parabolic problem { ∂u ∂t −∆Hu = 0 in Ω× (0,∞), u|∂Ω = 0. Then G is continuous on Ω×Ω× (0,∞); moreover, from estimate (7) and the maxi- mum principle we have G(ξ, ξ, t) ≤ Γ(ξ, ξ, t) for any ξ ∈ Ω, t > 0, Γ(ξ, ξ) ≤ G(ξ, ξ) + c(δ)t if ξ ∈ Ω and ρ(ξ, ∂Ω) ≥ δ > 0. It follows that An |Ω| tn+1 = ∫ Ω Γ(ξ, ξ, t)dξ ∼ ∫ Ω G(ξ, ξ, t)dξ as t → +0. Let ϕj(ξ) be a eigenfunction corresponding to the eigenvalue λj and normalized by∫ Ω ϕ2 jdξ = 1. Then we have ϕj ∈ C∞(Ω), ∑ λj<λ ϕ2 j (ξ) ≤ Cλn+1, G(ξ, ξ′, t) = ∞∑ j=1 e−λjtϕj(ξ)ϕj(ξ′). As a result, we obtain the important relation ∞∫ 0 e−λtdN(λ) = ∞∫ 0 G(ξ, ξ, t)dξ ∼ An |Ω| tn+1 as t → +0. (8) Now it is sufficient to apply the classical Tauberian theorem of Hardy-Littelwood. Tauberian Theorem (see [3]). Assume that N(λ) is a nondecreasing function on [0,∞) and ∞∫ 0 e−λtdN(λ) < ∞ for any t > 0. Then the relations N(λ) ∼ cλα as λ →∞ (α > 0), ∞∫ 0 e−λtdN(λ) ∼ αΓ(α)c tα as t → +0 are equivalent. Now from (6), (8) we get asymptotic formula (3). References 1. Weil H., Das asymptotische Verteilungsgesetz der Eigenwerte linearer partieller Differentialgleichun- gen (mit einer Anwendung auf die Theorie Hohl- raumstrahlung), Math. Ann. 71 (1912), 441-479. 2. Hörmander L., The Analysis of Linear Partial Differential Operators, vol. III, Springer Verlag, 1985. 3. Feller W., An Introduction to Probability Theory and its Applications, vol. II, John Wiley & Sons Inc., New York-London-Sydney-Toronto, 1971. Vladimir State Pedagogical University, Department of Math., prospect Stroiteley 11, Vladimir, 600024, Russia E-mail: alkhutov@vgpu.elcom.ru, zhikov@vgpu.elcom.ru