Bifurcation of an equilibrium point in a system of nonlinear parabolic equations with transformed argument

Gespeichert in:
Bibliographische Detailangaben
Datum:1999
1. Verfasser: Klevchuk, I.I.
Format: Artikel
Sprache:English
Veröffentlicht: Інститут прикладної математики і механіки НАН України 1999
Schriftenreihe:Нелинейные граничные задачи
Online Zugang:http://dspace.nbuv.gov.ua/handle/123456789/169289
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Bifurcation of an equilibrium point in a system of nonlinear parabolic equations with transformed argument / I.I. Klevchuk // Нелинейные граничные задачи: сб. науч. тр. — 1999. — Т. 9. — С. 168-173. — Бібліогр.: 6 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-169289
record_format dspace
spelling irk-123456789-1692892020-06-10T01:26:19Z Bifurcation of an equilibrium point in a system of nonlinear parabolic equations with transformed argument Klevchuk, I.I. 1999 Article Bifurcation of an equilibrium point in a system of nonlinear parabolic equations with transformed argument / I.I. Klevchuk // Нелинейные граничные задачи: сб. науч. тр. — 1999. — Т. 9. — С. 168-173. — Бібліогр.: 6 назв. — англ. 0236-0497 http://dspace.nbuv.gov.ua/handle/123456789/169289 en Нелинейные граничные задачи Інститут прикладної математики і механіки НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
format Article
author Klevchuk, I.I.
spellingShingle Klevchuk, I.I.
Bifurcation of an equilibrium point in a system of nonlinear parabolic equations with transformed argument
Нелинейные граничные задачи
author_facet Klevchuk, I.I.
author_sort Klevchuk, I.I.
title Bifurcation of an equilibrium point in a system of nonlinear parabolic equations with transformed argument
title_short Bifurcation of an equilibrium point in a system of nonlinear parabolic equations with transformed argument
title_full Bifurcation of an equilibrium point in a system of nonlinear parabolic equations with transformed argument
title_fullStr Bifurcation of an equilibrium point in a system of nonlinear parabolic equations with transformed argument
title_full_unstemmed Bifurcation of an equilibrium point in a system of nonlinear parabolic equations with transformed argument
title_sort bifurcation of an equilibrium point in a system of nonlinear parabolic equations with transformed argument
publisher Інститут прикладної математики і механіки НАН України
publishDate 1999
url http://dspace.nbuv.gov.ua/handle/123456789/169289
citation_txt Bifurcation of an equilibrium point in a system of nonlinear parabolic equations with transformed argument / I.I. Klevchuk // Нелинейные граничные задачи: сб. науч. тр. — 1999. — Т. 9. — С. 168-173. — Бібліогр.: 6 назв. — англ.
series Нелинейные граничные задачи
work_keys_str_mv AT klevchukii bifurcationofanequilibriumpointinasystemofnonlinearparabolicequationswithtransformedargument
first_indexed 2025-07-15T04:02:44Z
last_indexed 2025-07-15T04:02:44Z
_version_ 1837684140123619328
fulltext BIFURCATION OF AN EQUILIBRIUM POINT IN A SYSTEM OF NONLINEAR PARABOLIC EQUATIONS WITH TRANSFORMED ARGUMENT c© I.I.Klevchuk 1.Introduction. We consider the system of nonlinear parabolic equations with transformed argument ∂u ∂t = D(t, ε) ∂2u ∂x2 + A(t, ε)u + B(t, ε)u∆ + f(t, u, u∆, ε) (1) with periodic condition u(t, x + 2π) = u(t, x). (2) Here u∆ = u(t, x − ∆),∆ is a transformation of the argument, the matrices D(t, ε), A(t, ε), B(t, ε) and function f : R2n+p+1 → Rn are fourfold continuously differentiable with respect to all arguments and 2π - periodic with respect to t, f(t, u, v, ε) = O(|u|2 + |v|2) as |u|+ |v| → 0. Therefore the function f(t, u, v, ε) satisfies to the conditions f(t, 0, 0, ε) = 0, |f(t, u, v, ε)− f(t, u′, v′, ε)| ≤ ν(|u− u′|2 + |v − v′|2)1/2, |u| ≤ ρ, |u′| ≤ ρ, |v| ≤ ρ, |v′| ≤ ρ, (3) where |u|2 = u2 1 + . . . + u2 n, Lipschitz constant ν may be make sufficiently small under decreasing ρ. Function f(t, u, v, ε) can be determined outside the region |u| ≤ ρ, |v| ≤ ρ, so that the conditions (3) valid overall the space. Let the matrix D(t, ε) is positive definite. System (1) is used for modelling of nonlinear effects in optics [1]. The autonomous parabolic equation with transformed argument was considered in paper [2]. We consider the linear system ∂u ∂t = D(t, ε) ∂2u ∂x2 + A(t, ε)u + B(t, ε)u∆. (4) We will search the solution of the problem (4),(2) in the form of complex Fourier series u(t, x) = ∞∑ k=−∞ yk(t)exp(−ikx), y−k(t) = ȳk(t). (5) Substituting (5) into (4) and comparising the coefficients under exp(−ikx), we obtain the countable system of differential equations in Fourier coefficients dyk(t) dt = [−k2D(t, ε) + A(t, ε) + B(t, ε)exp(ik∆)]yk(t), k = 0,±1, . . . (6) System (6) is a one of linear differential equations with periodic coefficients. According to the Floquet theorem, a matrix Hk(t, ε), detHk(t, ε) 6= 0, Hk(t + 2π, ε) = Hk(t, ε) exists, such that the substitution yk = Hk(t, ε)zk transforms system (6) to the form dzk dt = Ck(ε)zk, C−k(ε) = C̄k(ε), k = 0,±1, . . . (7) Suppose that the characteristic equation det(Ck(ε) − λE) = 0, k ∈ Z, has the simple roots αm(ε) ± iβm(ε), αm(0) = 0, βm(0) = λm > 0,m = 1, ..., p, and the remaining of roots satisfies to the condition |Re λ| > γ + δ, γ > δ > 0. Suppose that ε is the p - dimensional parameter. We will search the solution of the problem (1),(2) in the form of series (5). Substi- tuting (5) into (1) and comparising the coefficients under exp(−ikx), k ∈ Z, we obtain the countable system of differential equations in Fourier coefficients dy dt = M(t, ε)y + F (t, y, ε), (8) where y = (y0, y1, y−1, ...)T , M(t, ε) is infinite blocks- diagonal matrix with the blocks Mk(t, ε) = −k2D(t, ε) + A(t, ε) + B(t, ε) exp(ik∆), k = 0,±1, ...; F (t, y, ε) = (f0, f1, f−1, ...)T is nonlinear function, where fk are the Fourier coefficients of the function f(t, u, u∆, ε) under exp(−ikx). We will show that the function F (t, y, ε) satisfies to the Lipschitz condition. Let us introduse in the space of sequences the following norm |y| = ( ∑∞ k=−∞ |yk|2)1/2. We consider another vector z = (z0, z1, z−1, ...)T of Fourier coefficiets for solution v(t, x) of equation (1) and the corresponding vector F (t, z, ε) = (g0, g1, g−1, ...)T . Using Parseval equation, we obtain |F (t, y, ε)− F (t, z, ε)| = ( ∞∑ k=−∞ |fk − gk|2)1/2 = ( 1 2π 2π∫ 0 |f(t, u, u∆, ε)− −f(t, v, v∆, ε)|2dx)1/2 ≤ ν( 1 2π 2π∫ 0 (|u− v|2 + |u∆ − v∆|2)dx)1/2 = = ν(2 ∞∑ k=−∞ |yk − zk|2)1/2 = √ 2ν|y − z|. Therefore the function F satisfies the Lipschitz condition with the constant √ 2ν. In the system (8), we make the substitution yk = Hk(t, ε)zk, k = 0,±1, ..., then we obtain the system dz dt = C(ε)z + G(t, z, ε), (9) where z = (z0, z1, z−1, ...)T , C(ε) = diag(C0(ε), C1(ε), C−1(ε), ...), G(t, z, ε) = H−1 (t, ε)F (t,H(t, ε)z, ε), H(t, ε) = diag (H0,H1,H−1, ...). We reduce the matrices Ck(ε) with eigenvalues αm(ε)± iβm(ε) and eigenvalues with positive real parts to the Jordan canonical form. Under this transformation, we obtain the system dw1 dt = A1(ε)w1 + G1(t, w, ε), (10) dw2 dt = A2(ε)w2 + G2(t, w, ε), where w = (w1, w2)T , A1(ε) = diag(A3(ε), A4(ε)), w1 ∈ Rl+2p, w2 belong to the some Banach space M , the eigenvalues of the matrix A3(ε) lie on the half-plane Re λ > γ + δ, A4(ε) is the diagonal matrix with number αm(ε) ± iβm(ε) on diagonal, and the eigenvalues of the infinite blocks-diagonal matrix A2(ε) lieing on half-plane Re λ < −γ − δ. Since the vector-function G satisfies the Lipschitz condition and G(t, 0, ε) = 0, we obtain G1(t, 0, ε) = G2(t, 0, ε) = 0, (|G1(t, v, ε)−G1(t, w, ε)|2+ (11) +|G2(t, v, ε)−G2(t, w, ε)|2)1/2 ≤ ν1|v − w|. The following estimations are valid | exp[A3(ε)t] ≤ N exp[(γ + δ)t], t ≤ 0, | exp[A2(ε)t]| ≤ (12) ≤ N exp[−(γ + δ)t], t ≥ 0, | exp[A4(ε)t]| ≤ N exp[(γ − δ)|t|], t ∈ R. 2.Existence and properties of integral manifolds. Theorem 1. Let the estimates (11),(12) holds. Thus, if ν1 < δ N(1 + 2N) , (13) then there exists a function h : Rl+3p+1 → M , h(t, 0, ε), |h(t, w1, ε)− h(t, w′1, ε)| ≤ 1 2 |w1 − w′1|, (14) such that the set S− = {(t, w1, w2)|t ∈ R, w1 ∈ Rl+2p, w2 = h(t, w1, ε), w2 ∈ M} is the integral manifold of the system (10). For any solution w(t) = (w1(t), h(t, w1(t), ε)) of the system (10) on manifold S−, the following estimate is valid |w(t)| ≤ 2N |w1(σ)| exp[γ(σ − t)], t ≤ σ. Theorem 2. Let the conditions (11)-(13) are satisfied. Then there exists a function g : Rp+1 × M → Rl+2p, g(t, 0, ε) = 0, |g(t, w, ε) − g(t, w′, ε)| ≤ 1 2 |w − w′|, such that the set S+ = {(t, w1, w2)|t ∈ R,w2 ∈ M, w1 = g(t, w2, ε), w1 ∈ Rl+2p} is the integral manifold of the system (10). For any solution w(t) = (g(t, w2(t), ε), w2(t)) of the system (10) on manifold S+, the folloving estimate is valid |w(t)| ≤ 2N |w2(σ)|exp[γ(σ − t)], t ≥ σ. Let t = σ is some number (initial value). We show that the integral manifold S− is exponential stable. Note that the equation on manifold S− is of the following form dv dt = A1(ε)v + G1(t, v, h(t, v, ε), ε). (15) Theorem 3. Let w(t) = (w1(t), w2(t)) be arbitrary solution of the system (10) with initial value w(σ) under t = σ. If the condition (13) is satisfied, then there exists a solution ξ(t) = (v(t), h(t, v(t), ε) on manifold S−, such that the following estimate is valid |w(t)− ξ(t)| ≤ 2N |w2(σ)− h(σ, v(σ), ε)|exp[γ(σ − t)], t ≥ σ. The equation (15) can be represented in the form dw3 dt = A3(ε)w3 + G3(t, w3, w4, h(t, w3, w4, ε), ε), (16) dw4 dt = A4(ε)w4 + G4(t, w3, w4, h(t, w3, w4, ε), ε). where v = (w3, w4), G1 = (G3, G4). If the condition (13) is satisfies, then the integral manifold S+ 1 = {(t, w3, w4)|t ∈ R,w4 ∈ R2p, w3 = r(t, w4, ε), w3 ∈ Rl} of the system (16) exists [3,4]. The function r(t, w, ε) satisfies the following estimate r(t, 0, ε) = 0, |r(t, w, ε)− r(t, v, ε)| ≤ 1 2 |w − v|, w ∈ R2p, v ∈ R2p. We denote r1(t, w, ε) = h(t, r(t, w, ε), w, ε). Theorem 4. Let the conditions (11)-(13) be satisfied. Then there exists the cen- tral manifold S = {(t, w3, w4, w2)|t ∈ R, w4 ∈ R2p, w3 = r(t, w4, ε), w3 ∈ Rl, w2 = r1(t, w4, ε), w2 ∈ M} of the system (10). 3.Bifurcation of equilibrium point. The equation on manifold S is of the follow- ing form dw4 dt = A4(ε)w4 + G4(t, r(t, w4, ε), w4, r1(t, w4, ε), ε). (17) The equation (17) can be represented in the form dvk dt = [αk(ε) + iβk(ε)]vk + Vk(t, v, v̄, ε), (18) dv̄k dt = [αk(ε)− iβk(ε)]v̄k + V̄k(t, v, v̄, ε), where vk is the complex variable, v = (v1, ..., vp)T , Vk(t + 2π, v, v̄, ε) = Vk(t, v, v̄, ε), Vk(t, v, v̄, ε) = O(|v|2) as |v| → 0, k = 1, ..., p. Let the following condition be satisfied 1) n1λ1 + ...+npλp 6= m as 0 < |n1|+ ...+ |np| < 6, where m,n1, ..., np are the integer numbers. Substituting the variable v = x + 4∑ k=2 Wk(t, x, x̄, ε), where W2,W3,W4 are the forms of the 2,3 and 4 order with periodic coefficients, we transform the system (18) to the following form [5,6] dxk dt = [αk(ε) + iβk(ε)]xk + xk p∑ j=1 akj(ε)xj x̄j + Xk(t, x, x̄, ε), dx̄k dt = [αk(ε)− iβk(ε)]x̄k + x̄k p∑ j=1 ākj(ε)xj x̄j + X̄k(t, x, x̄, ε), where Xk(t + 2π, x, x̄, ε) = Xk(t, x, x̄, ε), Xk(t, x, x̄, ε) = O(|x|5) as |x| → 0. Passing to the polar coordinates xk = rk exp(iϕk), x̄k = rk exp(−iϕk), we obtain the real system drk dt = αk(ε)rk + rk p∑ j=1 bkj(ε)r2 j + Rk(t, r, ϕ, ε), dϕk dt = βk(ε) + p∑ j=1 ckj(ε)r2 j + Φk(t, r, ϕ, ε), where bkj(ε) = Reakj(ε), ckj(ε) = Imakj(ε), Rk(t, r, ϕ, ε) = O(|r|5), Φk(t, r, ϕ, ε) = O(|r|4) as |r| → 0. We consider the bifurcation equation B(ε)r2 + a(ε) = 0, where B(ε) is the matrix with elements bkj(ε), a(ε) and r2 are the vectors with elements αk(ε) and r2 j . Theorem 5. Let detB(0) 6= 0, detda dε (0) 6= 0, the all elements of vector B−1(ε)a(ε) are negative and condition 1 is satisfied. Then, there exists an invariant torus of the system (1). The solutions on the torus are quasi-periodic if |(n, λ) + q| > γ|n|−p−1, λ = (λ1, ..., λp) = (β1(0), ..., βp(0)), where γ is some positive number, n = (n1, ..., np), q, n1, ..., np are integer numbers. References 1. Akhmanov S.A., Vorontsov M.A., Instabilities and structures in coherent nonlinear optical systems, Nonlinear waves. Dynamics and evolution. Moskow:Nauka (1989), 228-237. 2. Kashchenko S.A., Asymptotic space-ihomogeneous structures in coherent nonlinear-optical systems, J. Vychisl. Math. i Math. Phys. 31 (1991), no. 3, 467-473. 3. Plis V.A., Integral sets of periodic systems of differential equations, Moskow: Nauka (1977), 304. 4. Fodchuk V.I., Klevchuk I.I., Integral sets and reduction principle for differential-functional equa- tions, Ukr. Math. J. 34 (1982), no. 3, 334-340. 5. Samoilenko A.M., Polesya I.V., The birth of the invariant sets in a neigborhood of equilibrium point, Differentsial’nye Uravneniya 11 (1975), no. 8, 1409-1415. 6. Bibikov Yu.N., Hopf bifurcation for quasi-periodic motions, Differentsial’nye Uravneniya 16 (1980), no. 9, 1539-1544. Department of Mathematics, Chernivtsi State University, Kotsubinsky str.,2, Chernivtsi E-mail: klevchuk@chsu.cv.ua