Analytic in an unit ball functions of bounded L-index in joint variables

A concept of boundedness of the L-index in joint variables (see in Bandura A. I., Bordulyak M. T., Skaskiv O. B. Sufficient conditions of boundedness of L-index in joint variables, Mat. Stud. 45 (2016), 12–26) is generalized for analytic in a ball function. It is proved criteria of boundedness of th...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2017
Автори: Bandura, A.I., Skaskiv, O.B.
Формат: Стаття
Мова:English
Опубліковано: Інститут прикладної математики і механіки НАН України 2017
Назва видання:Український математичний вісник
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/169310
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Analytic in an unit ball functions of bounded L-index in joint variables / A.I. Bandura, O.B. Skaskiv // Український математичний вісник. — 2017. — Т. 14, № 1. — С. 1-15. — Бібліогр.: 32 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-169310
record_format dspace
spelling irk-123456789-1693102020-06-11T01:26:13Z Analytic in an unit ball functions of bounded L-index in joint variables Bandura, A.I. Skaskiv, O.B. A concept of boundedness of the L-index in joint variables (see in Bandura A. I., Bordulyak M. T., Skaskiv O. B. Sufficient conditions of boundedness of L-index in joint variables, Mat. Stud. 45 (2016), 12–26) is generalized for analytic in a ball function. It is proved criteria of boundedness of the L-index in joint variables which describe local behavior of partial derivatives on a skeleton of a polydisc. 2017 Article Analytic in an unit ball functions of bounded L-index in joint variables / A.I. Bandura, O.B. Skaskiv // Український математичний вісник. — 2017. — Т. 14, № 1. — С. 1-15. — Бібліогр.: 32 назв. — англ. 1810-3200 2010 MSC. 32A10, 32A22, 35G35, 32A40, 32A05, 32H50 http://dspace.nbuv.gov.ua/handle/123456789/169310 en Український математичний вісник Інститут прикладної математики і механіки НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description A concept of boundedness of the L-index in joint variables (see in Bandura A. I., Bordulyak M. T., Skaskiv O. B. Sufficient conditions of boundedness of L-index in joint variables, Mat. Stud. 45 (2016), 12–26) is generalized for analytic in a ball function. It is proved criteria of boundedness of the L-index in joint variables which describe local behavior of partial derivatives on a skeleton of a polydisc.
format Article
author Bandura, A.I.
Skaskiv, O.B.
spellingShingle Bandura, A.I.
Skaskiv, O.B.
Analytic in an unit ball functions of bounded L-index in joint variables
Український математичний вісник
author_facet Bandura, A.I.
Skaskiv, O.B.
author_sort Bandura, A.I.
title Analytic in an unit ball functions of bounded L-index in joint variables
title_short Analytic in an unit ball functions of bounded L-index in joint variables
title_full Analytic in an unit ball functions of bounded L-index in joint variables
title_fullStr Analytic in an unit ball functions of bounded L-index in joint variables
title_full_unstemmed Analytic in an unit ball functions of bounded L-index in joint variables
title_sort analytic in an unit ball functions of bounded l-index in joint variables
publisher Інститут прикладної математики і механіки НАН України
publishDate 2017
url http://dspace.nbuv.gov.ua/handle/123456789/169310
citation_txt Analytic in an unit ball functions of bounded L-index in joint variables / A.I. Bandura, O.B. Skaskiv // Український математичний вісник. — 2017. — Т. 14, № 1. — С. 1-15. — Бібліогр.: 32 назв. — англ.
series Український математичний вісник
work_keys_str_mv AT banduraai analyticinanunitballfunctionsofboundedlindexinjointvariables
AT skaskivob analyticinanunitballfunctionsofboundedlindexinjointvariables
first_indexed 2025-07-15T04:03:04Z
last_indexed 2025-07-15T04:03:04Z
_version_ 1837684159815876608
fulltext Український математичний вiсник Том 14 (2017), № 1, 1 – 15 Analytic in an unit ball functions of bounded L-index in joint variables Andriy Bandura, Oleh Skaskiv (Presented by V. Ya. Gutlyanskii) Abstract. A concept of boundedness of the L-index in joint variables (see in Bandura A. I., Bordulyak M. T., Skaskiv O. B. Sufficient condi- tions of boundedness of L-index in joint variables, Mat. Stud. 45 (2016), 12–26. dx.doi.org/10.15330/ms.45.1.12-26) is generalized for analytic in a ball function. It is proved criteria of boundedness of the L-index in joint variables which describe local behavior of partial derivatives on a skeleton of a polydisc. 2010 MSC. 32A05, 32A10, 32A30, 32A40, 30H99. Key words and phrases. Analytic function, ball, bounded L-index in joint variables, maximum modulus, partial derivative. 1. Introduction A concept of entire function of bounded index appeared in a paper of B. Lepson [23]. An entire function f is said to be of bounded index if there exists an integer N > 0 that (∀z ∈ C)(∀n ∈ {0, 1, 2, . . .}) : |f (n)(z)| n! ≤ max { |f (j)(z)| j! : 0 ≤ j ≤ N } . (1.1) The least such integer N is called the index of f. Note that the functions from this class have interesting properties. The concept is convenient to study the properties of entire solutions of differential equations. In particular, if an entire solution has bounded index then it immediately yields its growth estimates, an uniform in a some sense distribution of its zeros, a certain regular behavior of the solution etc. Received 27.03.2017 ISSN 1810 – 3200. c⃝ Iнститут математики НАН України 2 Analytic in an unit ball functions of bounded... Afterwards, S. Shah [28] and W. Hayman [19] independently proved that every entire function of bounded index is a function of exponential type. Namely, its growth is at most the first order and normal type. To study more general entire functions, A. D. Kuzyk and M. M. She- remeta [21] introduced a boundedness of the l-index, replacing |f (p)(z)| p! on |f (p)(z)| p!lp(|z|) in (1.1), where l : R+ → R+ is a continuous function. It allows to consider an arbitrary entire function f with bounded multiplicity of zeros. Because for the function f there exists a positive continuous function l(z) such that f is of bounded l-index [14]. Besides, there are papers where the definition of bounded l-index is generalizing for analytic function of one variable [22,30]. In a multidimensional case a situation is more difficult and interesting. Recently we with N. V. Petrechko [12,13] proposed approach to consider bounded L-index in joint variables for analytic in a polydisc functions, where L(z) = (l1(z), . . . , ln(z)), lj : Cn → R+ is a positive continuous functions, j ∈ {1, . . . , n}. Although J. Gopala Krishna and S.M. Shah [20] introduced an analytic in a domain (a nonempty connected open set) Ω ⊂ Cn (n ∈ N) function of bounded index for α = (α1, . . . , αn) ∈ Rn+. But analytic in a domain function of bounded index by Krishna and Shah is an entire function. It follows from necessary condition of the l-index boundedness for analytic in the unit disc function ( [29, Th.3.3,p.71]):∫ r 0 l(t)dt → ∞ as r → 1 (we take l(t) ≡ α1). Thus, there arises neces- sity to introduce and to investigate bounded L-index in joint variables for analytic in polydisc domain functions. Above-mentioned paper [12] is devoted analytic in a polydisc functions. Besides a polydisc, other example of polydisc domain in Cn is a ball. There are two known mono- graphs [26, 32] about spaces of holomorphic functions in the unit ball of Cn : Bergman spaces, Hardy spaces, Besov spaces, Lipschitz spaces, the Bloch space, etc. It shows the relevance of research of properties of holo- morphic function in the unit ball. In this paper we will introduce and study analytic in a ball functions of bounded L-index in joint variables. Of course, there are wide bibliography about entire functions of boun- ded L-index in joint variables [9–11,15–18,24,25]. Note that there exists other approach to consider bounded index in Cn — so-called functions of bounded L-index in direction (see [1–7]), where L : Cn → R+ is a positive continuous function. A. Bandura, O. Skaskiv 3 2. Main definitions and notations We need standard notations. Denote R+ = [0,+∞), 0 = (0, . . . , 0) ∈ Rn+, 1 = (1, . . . , 1) ∈ Rn+, 1j = (0, . . . , 0, 1︸︷︷︸ j−th place , 0, . . . , 0) ∈ Rn+, R = (r1, . . . , rn) ∈ Rn+, z = (z1, . . . , zn) ∈ Cn, |z| = √∑n j=1 |zj |2. For A = (a1, . . . , an) ∈ Rn, B = (b1, . . . , bn) ∈ Rn we will use for- mal notations without violation of the existence of these expressions AB = (a1b1, · · · , anbn), A/B = (a1/b1, . . . , an/bn), A B = ab11 a b2 2 · . . . ·abnn , ∥A∥ = a1 + · · · + an, and the notation A < B means that aj < bj , j ∈ {1, . . . , n}; the relation A ≤ B is defined similarly. For K = (k1, . . . , kn) ∈ Zn+ denote K! = k1! · . . . · kn!. Addition, scalar multi- plication, and conjugation are defined on Cn componentwise. For z ∈ Cn and w ∈ Cn we define ⟨z, w⟩ = z1w1 + · · ·+ znwn, where wk is the complex conjugate of wk. The polydisc {z ∈ Cn : |zj − z0j | < rj , j = 1, . . . , n} is denoted by Dn(z0, R), its skeleton {z ∈ Cn : |zj − z0j | = rj , j = 1, . . . , n} is denoted by Tn(z0, R), and the closed polydisc {z ∈ Cn : |zj − z0j | ≤ rj , j = 1, . . . , n} is denoted by Dn[z0, R], Dn = Dn(0,1), D = {z ∈ C : |z| < 1}. The open ball {z ∈ Cn : |z−z0| < r} is denoted by Bn(z0, r), its boundary is a sphere Sn(z0, r) = {z ∈ Cn : |z − z0| = r}, the closed ball {z ∈ Cn : |z − z0| ≤ r} is denoted by Bn[z0, r], Bn = Bn(0, 1), D = B1 = {z ∈ C : |z| < 1}. For K = (k1, . . . , kn) ∈ Zn+ and the partial derivatives of an analytic in Bn function F (z) = F (z1, . . . , zn) we use the notation F (K)(z) = ∂∥K∥F ∂zK = ∂k1+···+knf ∂zk11 . . . ∂zknn . Let L(z) = (l1(z), . . . , ln(z)), where lj(z) : Bn → R+ is a continuous function such that (∀z ∈ Bn) : lj(z) > β/(1− |z|), j ∈ {1, . . . , n}, (2.1) where β > √ n is a some constant. S. N. Strochyk, M. M. Sheremeta, V. O. Kushnir [29, 30] imposed a similar condition for a function l : D → R+ and l : G → R+, where G is arbitrary domain in C. Remark 2.1. Note that if R ∈ Rn+, |R| ≤ β, z0 ∈ Bn and 4 Analytic in an unit ball functions of bounded... z ∈ Dn[z0, R/L(z0)] then z ∈ Bn. Indeed, we have |z| ≤ |z − z0|+ |z0| ≤ √√√√ n∑ j=1 r2j l2j (z 0) + |z0| < √√√√ n∑ j=1 r2j β2 (1− |z0|)2 + |z0| = (1− |z0|) β √√√√ n∑ j=1 r2j + |z0| ≤ (1− |z0|) β β + |z0| = 1. An analytic function F : Bn → C is said to be of bounded L-index (in joint variables), if there exists n0 ∈ Z+ such that for all z ∈ Bn and for all J ∈ Zn+ |F (J)(z)| J !LJ(z) ≤ max { |F (K)(z)| K!LK(z) : K ∈ Zn+, ∥K∥ ≤ n0 } . (2.2) The least such integer n0 is called the L-index in joint variables of the function F and is denoted by N(F,L,Bn) (see [9]– [16]). By Q(Bn) we denote the class of functions L, which satisfy (2.1) and the following condition (∀R ∈ Rn+, |R| ≤ β, j ∈ {1, . . . , n}) : 0 < λ1,j(R) ≤ λ2,j(R) <∞, (2.3) where λ1,j(R) = inf z0∈Bn inf { lj(z) lj(z0) : z ∈ Dn [ z0, R/L(z0) ]} , (2.4) λ2,j(R) = sup z0∈Bn sup { lj(z) lj(z0) : z ∈ Dn [ z0, R/L(z0) ]} . (2.5) Λ1(R) = (λ1,1(R), . . . , λ1,n(R)), Λ2(R) = (λ2,1(R), . . . , λ2,n(R)). It is not difficult to verify that the class Q(Bn) can be defined as following: for every j∈{1, . . . , n} sup z,w∈Bn { lj(z) lj(w) : |zk − wk| ≤ rk min{lk(z), lk(w)} , k ∈ {1, . . . , n} } <∞, (2.6) i. e. conditions (2.3) and (2.6) are equivalent. Example 2.1. The function F (z) = exp{ 1 (1−z1)(1−z2)} has bounded L- index in joint variables with L(z) = ( 1 (1−|z1|)2(1−|z|) , 1 (1−|z|)(1−|z2|)2 ) and N(F,L,Bn) = 0. A. Bandura, O. Skaskiv 5 3. Local behavior of derivatives of function of bounded L-index in joint variables The following theorem is basic in theory of functions of bounded in- dex. It was necessary to prove more efficient criteria of index boundedness which describe a behavior of maximum modulus on a disc or a behavior of logarithmic derivative (see [1, 6, 22,29]). Theorem 3.1. Let L ∈ Q(Bn). An analytic in Bn function F has bounded L-index in joint variables if and only if for each R ∈ Rn+, |R| ≤ β, there exist n0 ∈ Z+, p0 > 0 such that for every z0 ∈ Bn there exists K0 ∈ Zn+, ∥K0∥ ≤ n0, and max { |F (K)(z)| K!LK(z) : ∥K∥ ≤ n0, z ∈ Dn [ z0, R/L(z0) ]} ≤ p0 |F (K0)(z0)| K0!LK0(z0) . (3.1) Proof. Let F be an analytic function of bounded L-index in joint vari- ables with N = N(F,L,Bn) <∞. For every R ∈ Rn+, |R| ≤ β, we put q = q(R) = [2(N + 1)∥R∥ n∏ j=1 (λ1,j(R)) −N (λ2,j(R)) N+1] + 1 where [x] is the entire part of the real number x, i.e. it is a floor function. For p ∈ {0, . . . , q} and z0 ∈ Bn we denote Sp(z 0, R) = max { |F (K)(z)| K!LK(z) : ∥K∥ ≤ N, z ∈ Dn [ z0, pR qL(z0) ]} , S∗ p(z 0, R) = max { |F (K)(z)| K!LK(z0) : ∥K∥ ≤ N, z ∈ Dn [ z0, pR qL(z0) ]} . Using (2.4) and Dn [ z0, pR qL(z0) ] ⊂ Dn [ z0, R L(z0) ] , we have Sp(z 0, R) = max { |F (K)(z)| K!LK(z) LK(z0) LK(z0) : ∥K∥ ≤N, z ∈Dn [ z0, pR qL(z0) ]} ≤ S∗ p(z 0, R)max  n∏ j=1 lNj (z0) lNj (z) : z ∈ Dn [ z0, pR qL(z0) ] ≤ S∗ p(z 0, R) n∏ j=1 (λ1,j(R)) −N . 6 Analytic in an unit ball functions of bounded... and, using (2.5), we obtain S∗ p(z 0, R) = max { |F (K)(z)| K!LK(z) LK(z) LK(z0) : ∥K∥≤N, z ∈ Dn [ z0, pR qL(z0) ]} ≤ max { |F (K)(z)| K!LK(z) (Λ2(R)) K : ∥K∥ ≤N, z ∈ Dn [ z0, pR qL(z0) ]} ≤ Sp(z 0, R) n∏ j=1 (λ2,j(R)) N . (3.2) Let K(p) ∈ Zn+ with ∥K(p)∥ ≤ N and z(p) ∈ Dn [ z0, pR qL(z0) ] be such that S∗ p(z 0, R) = |F (K(p))(z(p))| K(p)!LK (p) (z0) (3.3) Since by the maximum principle z(p) ∈ Tn(z0, pR qL(z0) ), we have z(p) ̸= z0. We choose z̃ (p) j = z0j + p−1 p (z (p) j − z0j ). Then for every j ∈ {1, . . . , n} we have |z̃(p)j − z0j | = p− 1 p |z(p)j − z0j | = p− 1 p prj qlj(z0) , (3.4) |z̃(p)j − z (p) j | = |z0j + p− 1 p (z (p) j − z0j )− z (p) j | = 1 p |z0j − z (p) j | = 1 p prj qlj(z0) = rj qlj(z0) . (3.5) From (3.4) we obtain z̃(p) ∈ Dn [ z0, (p−1)R q(R)L(z0) ] and S∗ p−1(z 0, R) ≥ |F (K(p))(z̃(p))| K(p)!LK (p) (z0) . From (3.3) it follows that 0 ≤ S∗ p(z 0, R)− S∗ p−1(z 0, R) ≤ |F (K(p))(z(p))| − |F (K(p))(z̃(p))| K(p)!LK (p) (z0) = 1 K(p)!LK (p) (z0) ∫ 1 0 d dt |F (K(p))(z̃(p) + t(z(p) − z̃(p)))|dt ≤ 1 K(p)!LK (p) (z0) × ∫ 1 0 n∑ j=1 |z(p)j − z̃ (p) j | ∣∣∣F (K(p)+1j)(z̃(p)+t(z(p) − z̃(p))) ∣∣∣ dt A. Bandura, O. Skaskiv 7 = 1 K(p)!LK (p) (z0) × n∑ j=1 |z(p)j − z̃ (p) j | ∣∣∣F (K(p)+1j)(z̃(p) + t∗(z(p) − z̃(p))) ∣∣∣ , (3.6) where 0 ≤ t∗ ≤ 1, z̃(p) + t∗(z(p) − z̃(p)) ∈ Dn(z0, pR qL(z0) ). For z ∈ Dn(z0, pR qL(z0) ) and J ∈ Zn+, ∥J∥ ≤ N + 1 we have |F (J)(z)|LJ(z) J !LJ(z0)LJ(z) ≤ (Λ2(R)) J max { |F (K)(z)| K!LK(z) : ∥K∥ ≤ N } ≤ n∏ j=1 (λ2,j(R)) N+1(λ1,j(R)) −N max { |F (K)(z)| K!LK(z0) : ∥K∥ ≤ N } ≤ n∏ j=1 (λ2,j(R)) N+1(λ1,j(R)) −NS∗ p(z 0, R). From (3.6) and (3.5) we obtain 0 ≤ S∗ p(z 0, R)− S∗ p−1(z 0, R) ≤ n∏ j=1 (λ2,j(R)) N+1(λ1,j(R)) −N × S∗ p(z 0, R) n∑ j=1 (k (p) j + 1)lj(z 0)|z(p)j − z̃ (p) j | = n∏ j=1 (λ2,j(R)) N+1(λ1,j(R)) −N S ∗ p(z 0, R) q(R) n∑ j=1 (k (p) j + 1)rj ≤ n∏ j=1 (λ2,j(R)) N+1(λ1,j(R)) −N S ∗ p(z 0, R) q(R) (N + 1)∥R∥ ≤ 1 2 S∗ p(z 0, R). This inequality implies S∗ p(z 0, R) ≤ 2S∗ p−1(z 0, R), and in view of inequa- lity (3.2) we have Sp(z 0, R) ≤ 2 n∏ j=1 (λ1,j(R)) −NS∗ p−1(z 0, R) ≤ 2 n∏ j=1 (λ1,j(R)) −N (λ2,j(R)) NSp−1(z 0, R) Therefore, max { |F (K)(z)| K!LK(z) : ∥K∥ ≤ N, z ∈ Dn [ z0, pR qL(z0) ]} = Sq(z 0, R) 8 Analytic in an unit ball functions of bounded... ≤ 2 n∏ j=1 (λ1,j(R)) −N (λ2,j(R)) NSq−1(z 0, R) ≤ . . . ≤ (2 n∏ j=1 (λ1,j(R)) −N (λ2,j(R)) N )qS0(z 0, R) = (2 n∏ j=1 (λ1,j(R)) −N (λ2,j(R)) N )q × max { |F (K)(z0)| K!LK(z0) : ∥K∥ ≤ N } . (3.7) From (3.7) we obtain inequality (3.1) with p0 = (2 n∏ j=1 (λ1,j(R)) −N (λ2,j(R)) N )q and some K0 with ∥K0∥ ≤ N . The necessity of condition (3.1) is proved. Now we prove the sufficiency. Suppose that for every R ∈ Rn+, |R| ≤ β, there exist n0 ∈ Z+, p0 > 1 such that for all z0 ∈ Bn and some K0 ∈ Zn+, ∥K0∥ ≤ n0, the inequality (3.1) holds. We write Cauchy’s formula as following ∀z0 ∈ Bn ∀k ∈ Zn+ ∀S ∈ Zn+ F (K+S)(z0) S! = 1 (2πi)n ∫ Tn ( z0, R L(z0) ) F (K)(z) (z − z0)S+1 dz. Therefore, applying (3.1), we have |F (K+S)(z0)| S! ≤ 1 (2π)n ∫ Tn ( z0, R L(z0) ) |F (K)(z)| |z − z0|S+1 |dz| ≤ ∫ Tn ( z0, R L(z0) ) |F (K)(z)| LS+1(z0) (2π)nRS+1 |dz| ≤ ∫ Tn ( z0, R L(z0) ) |F (K0)(z0)| × K!p0 ∏n j=1 λ n0 2,j(R)L S+K+1(z0) (2π)nK0!RS+1LK0(z0) |dz| = |F (K0)(z0)| K!p0 ∏n j=1 λ n0 2,j(R)L S+K(z0) K0!RSLK0(z0) . This implies |F (K+S)(z0)| (K + S)!LS+K(z0) ≤ ∏n j=1 λ n0 2,j(R)p0K!S! (K + S)!RS |F (K0)(z0)| K0!LK0(z0) . (3.8) A. Bandura, O. Skaskiv 9 Obviously, that K!S! (K + S)! = s1! (k1 + 1) · . . . · (k1 + s1) · · · sn! (kn + 1) · . . . · (kn + sn) ≤ 1. We choose rj ∈ (1, β/ √ n], j ∈ {1, . . . , n}. Then |R| = √∑n j=1 r 2 j ≤ β. Hence, p0 ∏n j=1 λ n0 2,j(R) RS → 0 as ∥S∥ → +∞. Thus, there exists s0 such that for all S ∈ Zn+ with ∥S∥ ≥ s0 the inequality holds p0K!S! ∏n j=1 λ n0 2,j(R) (K + S)!RS ≤ 1. Inequality (3.8) yields |F (K+S)(z0)| (K+S)!LK+S(z0) ≤ |F (K0)(z0)| K0!LK0 (z0) . This means that for every j ∈ Zn+ |F (J)(z0)| J !LJ(z0) ≤ max { |F (K)(z0)| K!LK(z0) : ∥K∥ ≤ s0 + n0 } where s0 and n0 are independent of z0. Therefore, the analytic in Bn function F has bounded L-index in joint variables with N(F,L,Bn) ≤ s0 + n0. Theorem 3.2. Let L ∈ Q(Bn). In order that an analytic in Bn function F be of bounded L-index in joint variables it is necessary that for every R ∈ Rn+, |R| ≤ β, ∃n0 ∈ Z+ ∃p ≥ 1 ∀z0 ∈ Bn ∃K0 ∈ Zn+, ∥K0∥ ≤ n0, and max { |F (K0)(z)| : z ∈ Dn [ z0, R/L(z0) ]} ≤ p|F (K0)(z0)| (3.9) and it is sufficient that for every R ∈ Rn+, |R| ≤ β, ∃n0 ∈ Z+ ∃p ≥ 1 ∀z0 ∈ Bn ∀j ∈ {1, . . . , n} ∃K0 j = (0, . . . , 0, k0j︸︷︷︸ j-th place , 0, . . . , 0) such that k0j ≤ n0 and max { |F (K0 j )(z)| : z ∈ Dn [ z0, R/L(z0) ]} ≤ p|F (K0 j )(z0)|. (3.10) Proof. Proof of Theorem 3.1 implies that the inequality (3.1) is true for some K0. Therefore, we have p0 K0! |F (K0)(z0)| LK0(z0) ≥ max { |F (K0)(z)| K0!LK0(z) : z ∈ Dn [ z0, R/L(z0) ]} 10 Analytic in an unit ball functions of bounded... = max { |F (K0)(z)| K0! LK 0 (z0) LK0(z0)LK0(z) : z ∈ Dn [ z0, R/L(z0) ]} ≥ max { |F (K0)(z)| K0! ∏n j=1 (λ2,j(R)) −n0 LK0(z0) : z ∈ Dn [ z0, R/L(z0) ]} . This inequality implies p0 ∏n j=1(λ2,j(R)) n0 K0! |F (K0)(z0)| LK0(z0) ≥ max { |F (K0)(z)| K0!LK0(z0) : z ∈ Dn [ z0, R/L(z0) ]} . (3.11) From (3.11) we obtain inequality (3.9) with p = p0 ∏n j=1 (λ2,j(R)) n0 . The necessity of condition (3.9) is proved. Now we prove the sufficiency of (3.10). Suppose that for every R ∈ Rn+, |R| ≤ β, ∃n0 ∈ Z+, p > 1 such that ∀z0 ∈ Bn and some K0 J ∈ Zn+ with k0j ≤ n0 the inequality (3.10) holds. We write Cauchy’s formula as following ∀z0 ∈ Bn ∀S ∈ Zn+ F (K0 J+S)(z0) S! = 1 (2πi)n ∫ Tn(z0,R/L(z0)) F (K0 J )(z) (z − z0)S+1 dz. This yields |F (K0 j+S)(z0)| S! ≤ 1 (2π)n ∫ Tn(z0,R/L(z0)) |F (K0 j )(z)| |z − z0|S+1 |dz| ≤ 1 (2π)n max{|F (K0 j )(z)| : z ∈ Dn [ z0, R/L(z0) ] }L S+1(z0) RS+1 × ∫ Tn(z0,R/L(z0)) |dz| = max{|F (K0 j )(z)| : z ∈ Dn [ z0, R/L(z0) ] }L S(z0) RS . Now we put R = ( β√ n , . . . , β√ n ) and use (3.10) |F (K0 j+S)(z0)| S! ≤ LS(z0) (β/ √ n) ∥S∥ max{|F (K0 j )(z)| : z ∈ Dn [ z0, R/L(z0) ] } ≤ pLS(z0) (β/ √ n)∥S∥ |F (K0 j )(z0)|. (3.12) A. Bandura, O. Skaskiv 11 We choose S ∈ Zn+ such that ∥S∥ ≥ s0, where p (β/ √ n)s0 ≤ 1. Therefore, (3.12) implies that for all j ∈ {1, . . . , n} and k0j ≤ n0 |F (K0 j+S)(z0)| LK 0 j+S(z0)(K0 j +S)! ≤ p (β/ √ n) ∥S∥ S!K0 j ! (S +K0 j )! |F (K0 j )(z0)| LK 0 j (z0)K0 j ! ≤ |F (K0 j )(z0)| LK 0 j (z0)K0 j ! . Consequently, N(F,L,Bn) ≤ n0 + s0. Remark 3.1. Inequality (3.9) is necessary and sufficient condition of boundedness of l-index for functions of one variable [22, 29, 31]. But it is unknown whether this condition is sufficient condition of boundedness of L-index in joint variables. Our restrictions (3.10) are corresponding multidimensional sufficient conditions. Lemma 3.1. Let L1, L2 ∈ Q(Bn) and for every z ∈ Bn L1(z) ≤ L2(z). If analytic in Bn function F has bounded L1-index in joint variables then F is of bounded L2-index in joint variables and N(F,L2,Bn) ≤ nN(F,L1,Bn). Proof. Let N(F,L1,Bn) = n0. Using (2.2) we deduce |F (J)(z)| J !LJ2 (z) = LJ1 (z) LJ2 (z) |F (J)(z)| J !LJ1 (z) ≤ LJ1 (z) LJ2 (z) max { |F (K)(z)| K!LK1 (z) : K ∈ Zn+, ∥K∥ ≤ n0 } ≤ LJ1 (z) LJ2 (z) max { LK2 (z) LK1 (z) |F (K)(z)| K!LK2 (z) : K ∈ Zn+, ∥K∥ ≤ n0 } ≤ max ∥K∥≤n0 ( L1(z) L2(z) )J−K max { |F (K)(z)| K!LK2 (z) : K ∈ Zn+, ∥K∥ ≤ n0 } . Since L1(z) ≤ L2(z) it means that for all ∥J∥ ≥ nn0 |F (J)(z)| J !LJ2 (z) ≤ max { |F (K)(z)| K!LK2 (z) : K ∈ Zn+, ∥K∥ ≤ n0 } . Thus, F has bounded L2-index in joint variables and N(F,L2,Bn) ≤ nN(F,L1,Bn). Denote L̃(z) = (l̃1(z), . . . , l̃n(z)). The notation L ≍ L̃ means that there exist Θ1 = (θ1,j , . . . , θ1,n) ∈ Rn+, Θ2 = (θ2,j , . . . , θ2,n) ∈ Rn+ such that ∀z ∈ Bn θ1,j l̃j(z) ≤ lj(z) ≤ θ2,j l̃j(z) for each j ∈ {1, . . . , n}. 12 Analytic in an unit ball functions of bounded... Theorem 3.3. Let L ∈ Q(Bn), L ≍ L̃, β|Θ1| > √ n. An analytic in Bn function F has bounded L̃-index in joint variables if and only if it has bounded L-index. Proof. It is easy to prove that if L ∈ Q(Bn) and L ≍ L̃ then L̃ ∈ Q(Bn). Let N(F, L̃,Bn) = ñ0 < +∞. Then by Theorem 3.1 for every R̃ = (r̃1, . . . , r̃n) ∈ Rn+, |R| ≤ β, there exists p̃ ≥ 1 such that for each z0 ∈ Bn and some K0 with ∥K0∥ ≤ ñ0, the inequality (3.1) holds with L̃ and R̃ instead of L and R. Hence p̃ K0! |F (K0)(z0)| LK0(z0) = p̃ K0! ΘK0 2 |F (K0)(z0)| ΘK0 2 LK0(z0) ≥ p̃ K0! |F (K0)(z0)| ΘK0 2 L̃K0(z0) ≥ 1 ΘK0 2 max { |F (K)(z)| K!L̃K(z) : ∥K∥ ≤ ñ0, z ∈ Dn [ z0, R̃/L̃(z) ]} ≥ 1 ΘK0 2 max { ΘK 1 |F (K)(z)| K!LK(z) : ∥K∥ ≤ ñ0, z ∈ Dn [ z0,Θ1R̃/L(z) ]} ≥ min0≤∥K∥≤n0 {ΘK 1 } ΘK0 2 × max { |F (K)(z)| K!LK(z) : ∥K∥ ≤ ñ0, z∈Dn [ z0,Θ1R̃/L̃(z) ]} . In view of Theorem 3.1 we obtain that function F has bounded L-index in joint variables. Theorem 3.4. Let L ∈ Q(Bn). An analytic in Bn function F has bounded L-index in joint variables if and only if there exist R ∈ Rn+, with |R| ≤ β, n0 ∈ Z+, p0 > 1 such that for each z0 ∈ Bn and for some K0 ∈ Zn+ with ∥K0∥ ≤ n0 the inequality (3.1) holds. Proof. The necessity of this theorem follows from the necessity of The- orem 3.1. We prove the sufficiency. The proof of Theorem 3.1 with R = ( β√ n , . . . , β√ n ) implies that N(F,L,Bn) < +∞. Let L∗(z) = R0L(z) R , R0 = ( β√ n , . . . , β√ n ). In general case from validity of (3.1) for F, L and R = (r1, . . . , rn) with |R| ≤ β, R ̸= R0, we obtain max { |F (K)(z)| K!(L∗(z0))K : ∥K∥ ≤ n0, z ∈ Dn [ z0, R0/L ∗(z0) ]} = max { |F (K)(z)| K!(R0L(z)/R)K : ∥K∥ ≤ n0, z ∈ Dn [ z0, R0/(R0L(z)/R) ]} A. Bandura, O. Skaskiv 13 ≤ max { n∥K∥/2|F (K)(z)| K!LK(z) : ∥K∥ ≤ n0, z∈Dn [ z0, R/L(z0) ]} ≤ p0 K0! nn0/2|F (K0)(z0)| LK0(z0) = nn0/2(β/ √ n)∥K 0∥p0 RK0K0! |F (K0)(z0)| (R0L(z)/R)K 0 < nn0/2p0 max ∥K0∥≤n0 (β/ √ n)∥K 0∥ RK0 |F (K0)(z0)| K0!(L∗(z))K0 . i. e. (3.1) holds for F, L∗ and R0 = ( β√ n , . . . , β√ n ). As above we apply Theorem 3.1 to the function F (z) and L∗(z) = R0L(z)/R. This implies that F is of bounded L∗-index in joint variables. Therefore, by Theorem 3.3 the function F has bounded L-index in joint variables. References [1] A. I. Bandura, O. B. Skaskiv, Entire functions of bounded L-index in direction // Mat. Stud., 27 (2007), No. 1, 30–52. [2] A. I. Bandura, On boundedness of the L-index in the direction for entire functions with plane zeros // Math. Bull. Shevchenko Sci. Soc., 6 (2009), 44–49. [3] A. I. Bandura, O. B. Skaskiv, Open problems for entire functions of bounded index in direction // Mat. Stud., 43 (2015), No. 1, 103–109. [4] A. I. Bandura, A class of entire functions of unbounded index in each direction // Mat. Stud., 44 (2015), No. 1, 107–112. [5] A. I. Bandura, Sum of entire functions of bounded L-index in direction // Mat. Stud., 45 (2016), No. 2, 149–158. [6] A. Bandura, O. Skaskiv, Entire functions of several variables of bounded index, Publisher I. E. Chyzhykov, Lviv, 2016. [7] A. I. Bandura, O. B. Skaskiv, Directional logarithmic derivative and distribution of zeros of entire function of bounded L-index in direction // Ukrain. Mat. Zh., 69 (2017), No. 3, 426–432. [8] A. Bandura, O. Skaskiv, Analytic in the unit ball functions of bounded L- index in direciton, (submitted in Rocky Mountain Journal of Mathematics) https://arxiv.org/abs/1501.04166 [9] A. I. Bandura, M. T. Bordulyak, O. B. Skaskiv, Sufficient conditions of bounded- ness of L-index in joint variables // Mat. Stud., 45 (2016), No. 1, 12–26. [10] A. Bandura, New criteria of boundedness of L-index in joint variables for entire functions // Math. Bull. Shevchenko Sci. Soc., 13 (2016), 58–67. [11] A. Bandura, N. Petrechko, Properties of power series expansion of entire function of bounded L-index in joint variables // Visn. Lviv Un-ty, Ser. Mech. Math., 82 (2016), 27–33. [12] A. I. Bandura, N. V. Petrechko, O. B. Skaskiv, Analytic functions in a polydisc of bounded L-index in joint variables // Mat. Stud., 46 (2016), No. 1, 72–80. 14 Analytic in an unit ball functions of bounded... [13] A. I. Bandura, N. V. Petrechko, O. B. Skaskiv, Maximum modulus of analytic in a bidisc functions of bounded L-index and analogue of Theorem of Hayman // Bo- hemica Mathematica (accepted for publication) https://arxiv.org/abs/1609.04190 [14] M. T. Bordulyak, A proof of Sheremeta conjecture concerning entire function of bounded l-index // Mat. Stud., 11 (1999), No. 2, 108–110. [15] M. T. Bordulyak, M. M. Sheremeta, Boundedness of the L-index of an entire function of several variables // Dopov. Akad. Nauk Ukr., (1993), No. 9, 10–13. [16] M. T. Bordulyak, The space of entire in Cn functions of bounded L-index // Mat. Stud., 4 (1995), 53–58. [17] B. C. Chakraborty, R. Chanda, A class of entire functions of bounded index in several variables // J. Pure Math., 12 (1995), 16–21. [18] B. C. Chakraborty, T. K. Samanta, On entire functions of bounded index in several variables // J. Pure Math., 17 (2000), 53–71. [19] W. K. Hayman, Differential inequalities and local valency // Pacific J. Math., 44 (1973), No. 1, 117–137. [20] G. J. Krishna, S. M. Shah, Functions of bounded indices in one and several com- plex variables // In: Mathematical essays dedicated to A.J. Macintyre, Ohio Univ. Press, Athens, Ohio, 1970, 223–235. [21] A. D. Kuzyk, M. M. Sheremeta, Entire functions of bounded l-distribution of values // Math. Notes, 39 (1986), No. 1, 3–8. [22] V. O. Kushnir, M. M. Sheremeta, Analytic functions of bounded l-index // Mat. Stud., 12 (1999), No. 1, 59–66. [23] B. Lepson, Differential equations of infinite order, hyperdirichlet series and ana- lytic in Bn functions of bounded index // Proc. Sympos. Pure Math., Amer. Math. Soc.: Providence, Rhode Island, 2 (1968), 298–307. [24] F. Nuray, R. F. Patterson, Entire bivariate functions of exponential type // Bull. Math. Sci., 5 (2015), No. 2, 171–177. [25] F. Nuray, R. F. Patterson, Multivalence of bivariate functions of bounded index // Le Matematiche, 70 (2015), No. 2, 225–233. [26] W. Rudin, Function Theory in the unit ball on Cn, Reprint of the 1980 Edition, Springer, 2008. [27] M. Salmassi, Functions of bounded indices in several variables // Indian J. Math., 31 (1989), No. 3, 249–257. [28] S. M. Shah, Entire function of bounded index // Lect. Notes in Math., 599 (1977), 117–145. [29] M. Sheremeta, Analytic functions of bounded index, VNTL Publishers, Lviv, 1999. [30] S. N. Strochyk, M. M. Sheremeta, Analytic in the unit disc functions of bounded index // Dopov. Akad. Nauk Ukr., 1 (1993), 19–22. [31] M. N. Sheremeta, A. D. Kuzyk, Logarithmic derivative and zeros of an entire function of bounded l-index // Sib. Math. J., 33 (1992), No. 2, 304–312. [32] K. Zhu, Spaces of holomorphic functions in the unit ball, Graduate Texts in Math- ematics, Springer, New York, 2005. A. Bandura, O. Skaskiv 15 Contact information Andriy Bandura Ivano-Frankivsk National Technical University of Oil and Gas, Ivano-Frankivsk, Ukraine E-Mail: andriykopanytsia@gmail.com Oleh Skaskiv Ivan Franko National University of Lviv, Lviv, Ukraine E-Mail: olskask@gmail.com