An extremal problem for the non-overlapping domains

Sharp estimates of product of inner radii for pairwise disjoint domains are obtained. In particular, we solve an extremal problem in the case of arbitrary finite number of free poles on the system points on the rays.

Gespeichert in:
Bibliographische Detailangaben
Datum:2017
1. Verfasser: Targonskii, A.
Format: Artikel
Sprache:English
Veröffentlicht: Інститут прикладної математики і механіки НАН України 2017
Schriftenreihe:Український математичний вісник
Online Zugang:http://dspace.nbuv.gov.ua/handle/123456789/169316
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:An extremal problem for the non-overlapping domains / A. Targonskii // Український математичний вісник. — 2017. — Т. 14, № 1. — С. 126-134. — Бібліогр.: 18 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-169316
record_format dspace
spelling irk-123456789-1693162020-06-11T01:26:26Z An extremal problem for the non-overlapping domains Targonskii, A. Sharp estimates of product of inner radii for pairwise disjoint domains are obtained. In particular, we solve an extremal problem in the case of arbitrary finite number of free poles on the system points on the rays. 2017 Article An extremal problem for the non-overlapping domains / A. Targonskii // Український математичний вісник. — 2017. — Т. 14, № 1. — С. 126-134. — Бібліогр.: 18 назв. — англ. 1810-3200 2001 MSC. 30C70, 30C75 http://dspace.nbuv.gov.ua/handle/123456789/169316 en Український математичний вісник Інститут прикладної математики і механіки НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description Sharp estimates of product of inner radii for pairwise disjoint domains are obtained. In particular, we solve an extremal problem in the case of arbitrary finite number of free poles on the system points on the rays.
format Article
author Targonskii, A.
spellingShingle Targonskii, A.
An extremal problem for the non-overlapping domains
Український математичний вісник
author_facet Targonskii, A.
author_sort Targonskii, A.
title An extremal problem for the non-overlapping domains
title_short An extremal problem for the non-overlapping domains
title_full An extremal problem for the non-overlapping domains
title_fullStr An extremal problem for the non-overlapping domains
title_full_unstemmed An extremal problem for the non-overlapping domains
title_sort extremal problem for the non-overlapping domains
publisher Інститут прикладної математики і механіки НАН України
publishDate 2017
url http://dspace.nbuv.gov.ua/handle/123456789/169316
citation_txt An extremal problem for the non-overlapping domains / A. Targonskii // Український математичний вісник. — 2017. — Т. 14, № 1. — С. 126-134. — Бібліогр.: 18 назв. — англ.
series Український математичний вісник
work_keys_str_mv AT targonskiia anextremalproblemforthenonoverlappingdomains
AT targonskiia extremalproblemforthenonoverlappingdomains
first_indexed 2025-07-15T04:03:27Z
last_indexed 2025-07-15T04:03:27Z
_version_ 1837684183657349120
fulltext Український математичний вiсник Том 14 (2017), № 1, 126 – 134 An extremal problem for the non-overlapping domains Andrey Targonskii (Presented by V. Ya. Gutlyanskii) Abstract. Sharp estimates of product of inner radii for pairwise dis- joint domains are obtained. In particular, we solve an extremal problem in the case of arbitrary finite number of free poles on the system points on the rays. 2001 MSC. 30C70, 30C75. Key words and phrases. Inner radius of domain, quadratic differen- tial, piecewise-separating transformation, Green function, radial systems of points, logarithmic capacity, variational formula. Introduction This paper belongs to the theory of extremal problems on classes of non-overlapping domain, which is a separate direction in geometric theory of functions of a complex variable. The begin of these investigations associated with the paper of M. A. Lavrent’ev [1] in 1934. He found the maximum of some functional with respect to two simply connected domains with two fixed points. We note that this result was needed him for applying to some aerodynamics problems. In 1947, G. M. Goluzin solved a similar problem for three fixed points on the complex plane [2]. Then the topic began to evolve rapidly. In this connection we may recall papers of many authors, including Y.E. Alenitsina, M. A. Lebedev, J. Jenkins, P.M. Tamrazov, P. P. Kufareva and others. Using the idea of P.M. Tamrazov, in 1975 G. P. Bakhtin solved first the problem with so-called “free poles”, on the unit circle, see, e.g., [3]. Received 30.11.2016 The author is grateful to Prof. A. Bakhtin for suggesting problems and useful dis- cussions. This research is partially supported by Grant of Ministry of Education and Science of Ukraine (Project No. 0115U003027) ISSN 1810 – 3200. c⃝ Iнститут математики НАН України A. Targonskii 127 An important step for the development of this topic was papers of V.N. Dubinin. He developed a new method of research that is method of piecewise-separating transformation. He also first solved numerous of extremal problems for an arbitrary but fixed multi connected non- overlapping domains (see, e.g., [4–6]). Now this type of extremal problems is used for investigations in holomorphic dynamics. In the last decade actively used Bakhtin’s method of “managing func- tional”. He managed to solve a series of extremal problems for so-called “radial systems of points” (see, e.g., [4, 7–12]). In the present paper we use the mentioned about Bakhtin’s method. 1. Theory Let N, R — the sets natural and real numbers conformity, C — the plain complex numbers, C = C ∪ {∞} — the Riemannian sphere. For fix number n ∈ N system points An = {ak}nk=1 the relations are executed: 0 = arg a1 < arg a2 < ... < arg an < 2π. (1.1) For such systems of points we will consider the following sizes: σk = 1 π (arg ak+1 − arg ak) , k = 1, 2, ..., n, an+1 := a1. Let’s consider system of angular domains: Mk := {w : arg ak < argw < arg ak+1} , k = 1, n, an+1 := a1. Let’s consider the following “operating”, functionalities for arbitrary An-system points T(An) = n∏ k=1 χ (∣∣∣∣ akak+1 ∣∣∣∣ 1 2σk ) |ak|, where χ(t) = 1 2(t+ 1 t ). Let {Bk}nk=1 — arbitrary non-overlapping domains such that ak ∈ Bk, Bk ⊂ C, k = 1, n. (1.2) Let gB (z, a) = hB,a(z) + log 1 |z − a| 128 An extremal problem for... generalized Green’s function of domains B with respect to a point a ∈ B. If a = ∞, then gB (z,∞) = hB,∞(z) + log 1 |z| . The value of r(B, a) := exp (hB,a(z)) the define of inner radius domain B ⊂ C with respect to a point a ∈ B (see [4–6,13–15]). We use the concept of a quadratic differential. Recall that a quadratic differential on a Riemann surface S is a map φ : TS → C satisfying φ(λυ) = λ2φ(υ) for all υ ∈ TS and all λ ∈ C, TS — tangent space. If z ∈ U → C, is a chart defined on some open set U ⊂ S then φ is equal on U to φU (z)dz 2 for some function φU defined on z(U). Suppose that two charts z : U → C and w : V → C on S overlap, and let h := w ◦ z−1 be the transition function. If φ is represented both as φU (z)dz2 and φV (w)dw 2 on U ∩ V , then we have φV (h(z)) ( h′(z) )2 = φU (z). One way to say this is that quadratic differentials transform under pull- backs by the square of the derivative. As the main results associated with it can be found in [16]. 2. Results Subject of studying of our work are the following problems. Problem. Let n ∈ N, n ≥ 2, α ≥ 0. Maximum functional be found n∏ k=1 (|ak+1 − ak|α · r (Bk, ak)) , where An = {ak}nk=1 — arbitrary system points on the rays, the satisfied condition (1.1), {Bk}nk=1 — arbitrary set non-overlapping domains, the satisfied condition (1.2), ak ∈ Bk ⊂ C, and all extremal the describe (k = 1, n). A. Targonskii 129 Lemma 1. The function P (τ) = ln sin πτ 2 is convex for τ ∈ (0, 2). Proof. Find the second-order derivative P ′′(τ) = π 2 · ( ctg πτ 2 )′ = − (π 2 )2 · 1 sin2 πτ2 . Consequently, P ′′(τ) < 0, for 0 < τ < 2. Theorem 1. Let n ∈ N, n ≥ 2, α ≥ 0. Then for all system points An = {ak}nk=1, the satisfied condition (1.1) and (|ak| − |ak+1|)2 = 4 sin2 πσk 2 (1− |ak||ak+1|) , k = 1, n, and arbitrary set non-overlapping domains {Bk}nk=1, the satisfied condi- tion (1.2), be satisfied inequality n∏ k=1 (|ak+1 − ak|α · r (Bk, ak)) ≤ ( 2α+2 n · sinα π n )n · T(An) . The equality obtain in this inequality, when points ak and domains Bk are, conformity, the poles and the circular domains of the quadratic dif- ferential Q(w)dw2 = − wn−2 (wn − 1)2 dw2. (2.3) Proof. The theorem of the proof leans on a method of the piece-dividing transformation developed by Dubinin (see [4–6]). Function ζk (w) = −i ( e−i arg akw ) 1 σk , k = 1, 2, . . . , n (2.4) realizes univalent and conformal transformations of domain Mk to the right half-plane Reζ > 0, for all k = 1, n. From a formula (2.4) we receive the following asymptotic expressions |ζk (w)− ζk (am)| ∼ 1 σk |am| 1 σk −1 |w − am| , 130 An extremal problem for... w → am, k = 1, 2, ..., n, m = k, k + 1. (2.5) It’s obvious that ζk (ak) = −i|ak| 1 σk , ζk (ak+1) = i|ak+1| 1 σk , k = 1, 2, ..., n. (2.6) Family of functions {ζk(w)}nk=1, set by equality (2.4), it is possible for by piece-dividing transformation (see [4–6]) domains { Bk : k = 1, n } in relation to the system of corners {Mk}nk=1. For any domain ∆ ∈ C the de- fine (∆)∗ := { w ∈ C : w ∈ ∆ } . Let G (1) k the define connected component ζk ( Bk ∩ Mk )∪ ( ζk ( Bk ∩ Mk ))∗ , containing a point (−i), G(2) k−1 – the define connected component ζk−1 ( Bk ∩ Mk−1 )∪ ( ζk−1 ( Bk ∩ Mk−1 ))∗ , containing a point i, k = 1, n, M0 := Mn, ζ0 := ζn, G (2) 0 := G (2) n . It is clear, that, G (s) k generally speaking, domains are multiconnected do- mains, k = 1, n, s = 1, 2. Pair of domains G (2) k−1 and G (1) k grows out of piece-dividing transformation domainsBk concerning families {Mk−1,Mk}, {ζk−1, ζk} in point ak, k = 1, n. From the Theorem 1.9 [13] (see also [5,6]) and the formulae (2.5), we have the inequalities r (Bk, ak) ≤ [ |ak| 1− 1 σk · σk · r ( G (1) k , ζk (ak) ) · σk−1 × |ak| 1− 1 σk−1 · r ( G (2) k−1, ζk−1 (ak) )] 1 2 , k = 1, 2, ..., n. (2.7) From the condition that the points ak, k = 1, 2, .., n, we get that |ak+1 − ak| = 2 sin πσk 2 , k = 1, 2, ..., n. (2.8) Using formulas (2.7), (2.8) it is received the following ratio: n∏ k=1 (|ak+1 − ak|α · r (Bk, ak)) ≤ 2nα · n∏ k=1 σk |ak| |ak| 1 2σk · |ak| 1 2σk−1 × n∏ k=1 sinα πσk 2 · n∏ k=1 ( r ( G (1) k , ζk (ak) ) · r ( G (2) k , ζk (ak+1) )) 1 2 . (2.9) Inequalities Lavrent’ev using [1] and (2.6), we get: r ( G (1) k , ζk (ak) ) · r ( G (2) k , ζk (ak+1) ) ≤ ( |ak| 1 σk + |ak+1| 1 σk )2 , k = 1, 2, ..., n. A. Targonskii 131 Taking into account the last inequality, the expression (2.9) can be written as follows: n∏ k=1 (|ak+1 − ak| · r (Bk, ak)) ≤ 2nα · n∏ k=1 σk sin α πσk 2 × n∏ k=1 |ak| 1 σk + |ak+1| 1 σk |ak| 1 2σk · |ak| 1 2σk−1 |ak| . It’s obvious that n∏ k=1 |ak| 1 σk + |ak+1| 1 σk |ak| 1 2σk · |ak| 1 2σk−1 |ak| = 2n · T(An) . Also, n∏ k=1 σk ≤ ( 2 n )n . The equality obtain in this inequality, if and only if σ1 = σ2 = ... = σn = 2 n . Then, we have: n∏ k=1 (|ak+1 − ak| · r (Bk, ak)) ≤ ( 2α+2 n )n · T(An) · n∏ k=1 sinα πσk 2 . (2.10) The equality obtain in this inequality, when points ak and domains Bk are, conformity, the poles and the circular domains of the quadratic dif- ferential Q(ζ)dζ2 = dζ2 (ζ2 + 1)2 . (2.11) Using the Lemma that the function α ln sin πσk 2 , is convex for σk ∈ (0; 2) , α ≥ 0. Hence, when σk ∈ (0; 2), then α n · n∑ k=1 ln sin πσk 2 ≤ α ln sin ( π 2 · 1 n n∑ k=1 σk ) . Given that n∑ k=1 σk = 2, 132 An extremal problem for... we obtain n∏ k=1 sinα πσk 2 ≤ sinnα π n . (2.12) The equality obtain in this inequality, if and only if σ1 = σ2 = ... = σn = 2 n . Then from (2.10) using formulas (2.12) it is received the following ratio n∏ k=1 (|ak+1 − ak| · r (Bk, ak)) ≤ ( 2α+2 n )n · T(An) · sinnα π n . The equality obtain in this inequality, when points ak and domains Bk are, conformity, the poles and the circular domains of the quadratic differential (2.3). It is derived from the square of the quadratic differen- tial (2.11) conversion using ζ = −iw n 2 . Provided that, |ak| = 1, k = 1, 2, ..., n we obtain the well known result. Corollary 1. [4–6]. Let n ∈ N, n ≥ 2, α > 0. Then for all system points An = {ak}nk=1, the satisfied condition (1.1) and |ak| = 1, k = 1, 2, ..., n, and arbitrary set non-overlapping domains {Bk}nk=1, the satisfied condi- tion (1.2), be satisfied inequality n∏ k=1 (|ak+1 − ak|α · r (Bk, ak)) ≤ ( 2α+2 n · sinα π n )n . The equality obtain in this inequality, when points ak and domains Bk are, conformity, the poles and the circular domains of the quadratic dif- ferential (2.3). As a consequence, at α = 0, |ak| = 1, k = 1, 2, ..., n we obtain the well known result. Corollary 2. [4–6]. Let n ∈ N, n ≥ 2. Then for all system points An = {ak}nk=1, the satisfied condition (1.1) and |ak| = 1, k = 1, 2, ..., n, and A. Targonskii 133 arbitrary set non-overlapping domains {Bk}nk=1, the satisfied condition (1.2), be satisfied inequality n∏ k=1 r (Bk, ak) ≤ ( 4 n )n . The equality obtain in this inequality, when points ak and domains Bk are, conformity, the poles and the circular domains of the quadratic dif- ferential (2.3). References [1] M. A. Lavrent’ev, On the theory of conformal mappings // Tr. Fiz.-Mat. Inst. Akad. Nauk SSSR, 5 (1934), 159–245. [2] G. M. Goluzin, Geometric theory of functions of a complex variable, Nauka, Moscow, 1966. [3] G. P. Bakhtina, Variational methods and quadratic differentials in problems for disjoint domains, PhD thesis, Kiev, 1975. [4] A. K. Bakhtin, G. P. Bakhtina, Yu. B. Zelinskii, Topological-algebraic structures and geometric methods in complex analysis, Inst. Math. NAS Ukraine, Kiev, 2008. [5] V. N. Dubinin, Separating transformation of domains and problems of extremal division // Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Ros. Akad. Nauk, 168 (1988), 48–66. [6] V. N. Dubinin, Method of symmetrization in the geometric theory of functions of a complex variable // Usp. Mat. Nauk, 49 (1994), No. 1, 3–76. [7] A. K. Bakhtin, Inequalities for the inner radii of nonoverlapping domains and open sets // Ukr. Math. J., 61 (2009), No. 5, 716–733. [8] A. K. Bakhtin, A. L. Targonskii, Extremal problems and quadratic differential // Nonlin. Oscillations, 8 (2005), No. 3, 296–301. [9] A. Targonskii, Extremal problem (2n; 2m-1)-system points on the rays // An. St. Univ. Ovidius Constanta, 24 (2016), No. 2, 283–299. [10] A. Targonskii, Extremal problems on the generalized (n; d)-equiangular system of points // An. St. Univ. Ovidius Constanta, 22 (2014), No. 2, 239–251. [11] A. L. Targonskii, Extremal problems for partially non-overlapping domains on equiangular systems of points // Bull. Soc. Sci. Lett. Lodz, 63 (2013), No. 1, 57–63. [12] A. Targonskii, I. Targonskaya, On the One Extremal Problem on the Riemann Sphere // International Journal of Advanced Research in Mathematics, 4 (2016), 1–7. [13] V. N. Dubinin, Asymptotic representation of the modulus of a degenerating con- denser and some its applications // Zap. Nauchn. Sem. Peterburg. Otdel. Mat. Inst., 237 (1997), 56–73. [14] V. N. Dubinin, Capacities of condensers and symmetrization in geometric func- tion theory of complex variables Dal’nayka, Vladivostok, 2009. [15] W. K. Hayman, Multivalent functions, Cambridge University, Cambridge, 1958. 134 An extremal problem for... [16] J. A. Jenkins, Univalent functions and conformal mapping, Springer, Berlin, 1958. [17] A. K. Bakhtin, A. L. Targonskii, Generalized (n, d)-ray systems of points and in- equalities for nonoverlapping domains and open sets // Ukr. Math. J., 63 (2011), No. 7, 999–1012. [18] A. K. Bakhtin, A. L. Targonskii, Some extremal problems in the theory of nonover- lapping domains with free poles on rays // Ukr. Math. J., 58 (2006), No. 12, 1950–1954. Contact information Andrey Targonskii Zhitomir State University, Department of Mathematics, Zhitomir, Ukraine E-Mail: targonsk@mail.ru, targonsk@zu.edu.ua