On the recursive sequence x(n+1)=xn-(k+1)/1+xnxn-1...xn-k
In this paper a solution of the one difference equation was investigated.
Gespeichert in:
Datum: | 2017 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | English |
Veröffentlicht: |
Інститут прикладної математики і механіки НАН України
2017
|
Schriftenreihe: | Український математичний вісник |
Online Zugang: | http://dspace.nbuv.gov.ua/handle/123456789/169378 |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Zitieren: | On the recursive sequence x(n+1)=xn-(k+1)/1+xnxn-1...xn-k / D. Simsek, F.G. Abdullayev // Український математичний вісник. — 2017. — Т. 14, № 4. — С. 564-574. — Бібліогр.: 28 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-169378 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1693782020-06-12T01:26:20Z On the recursive sequence x(n+1)=xn-(k+1)/1+xnxn-1...xn-k Simsek, D. Abdullayev, F.G. In this paper a solution of the one difference equation was investigated. 2017 Article On the recursive sequence x(n+1)=xn-(k+1)/1+xnxn-1...xn-k / D. Simsek, F.G. Abdullayev // Український математичний вісник. — 2017. — Т. 14, № 4. — С. 564-574. — Бібліогр.: 28 назв. — англ. 1810-3200 http://dspace.nbuv.gov.ua/handle/123456789/169378 en Український математичний вісник Інститут прикладної математики і механіки НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
description |
In this paper a solution of the one difference equation was investigated. |
format |
Article |
author |
Simsek, D. Abdullayev, F.G. |
spellingShingle |
Simsek, D. Abdullayev, F.G. On the recursive sequence x(n+1)=xn-(k+1)/1+xnxn-1...xn-k Український математичний вісник |
author_facet |
Simsek, D. Abdullayev, F.G. |
author_sort |
Simsek, D. |
title |
On the recursive sequence x(n+1)=xn-(k+1)/1+xnxn-1...xn-k |
title_short |
On the recursive sequence x(n+1)=xn-(k+1)/1+xnxn-1...xn-k |
title_full |
On the recursive sequence x(n+1)=xn-(k+1)/1+xnxn-1...xn-k |
title_fullStr |
On the recursive sequence x(n+1)=xn-(k+1)/1+xnxn-1...xn-k |
title_full_unstemmed |
On the recursive sequence x(n+1)=xn-(k+1)/1+xnxn-1...xn-k |
title_sort |
on the recursive sequence x(n+1)=xn-(k+1)/1+xnxn-1...xn-k |
publisher |
Інститут прикладної математики і механіки НАН України |
publishDate |
2017 |
url |
http://dspace.nbuv.gov.ua/handle/123456789/169378 |
citation_txt |
On the recursive sequence x(n+1)=xn-(k+1)/1+xnxn-1...xn-k / D. Simsek, F.G. Abdullayev // Український математичний вісник. — 2017. — Т. 14, № 4. — С. 564-574. — Бібліогр.: 28 назв. — англ. |
series |
Український математичний вісник |
work_keys_str_mv |
AT simsekd ontherecursivesequencexn1xnk11xnxn1xnk AT abdullayevfg ontherecursivesequencexn1xnk11xnxn1xnk |
first_indexed |
2025-07-15T04:07:17Z |
last_indexed |
2025-07-15T04:07:17Z |
_version_ |
1837684425396060160 |
fulltext |
Український математичний вiсник
Том 14 (2017), № 4, 564 – 574
On the recursive sequence xn+1 =
xn−(k+1)
1+xnxn−1...xn−k
Dağıstan Simsek, Fahreddin G. Abdullayev
Abstract. In this paper a solution of the following difference equation
was investigated
xn+1 =
xn−(k+1)
1 + xnxn−1...xn−k
, n = 0, 1, 2, . . .
where x−(k+1), x−k, . . . , x−1, x0 ∈ (0,∞) and k = 0, 1, 2, . . . .
Key words and phrases. Difference equation, period k + 2 solution.
1. Introduction
The study of difference equations has been growing continuously for
the last decade. This is largely due to the fact that difference equations
manifest themselves as mathematical models describing real life situations
in probability theory, queuing theory, statistical problems, stochastic time
series, combinatorial analysis, number theory, geometry, electrical net-
work, quanta in radiation, genetics in biology, economics, psychology,
sociology, etc. In fact, now it occupies a central position in applicable
analysis and will no doubt continue to play an important role in mathe-
matics as a whole. Recently there has been a lot of interest in studying
the periodic nature of nonlinear difference equations. For some recent
results, concerning among other problems, the periodic nature of scalar
nonlinear difference equations see, for example, [1–28].
Cinar [2, 3, 4] has studied the following problems with positive initial
values
xn+1 =
xn−1
1 + axnxn−1
,
xn+1 =
xn−1
−1 + axnxn−1
,
Received 19.12.2017
ISSN 1810 – 3200. c⃝ Iнститут прикладної математики i механiки НАН України
D. Simsek, F. G. Abdullayev 565
xn+1 =
axn−1
1 + bxnxn−1
for n = 0, 1, 2, ..., respectively.
In [18] Stevic solved the following problem
xn+1 =
xn−1
1 + xn
for n = 0, 1, 2, . . . ,
where x−1, x0 ∈ (0,∞). Also, this result was generalized to the equation
of the following form:
xn+1 =
xn−1
g(xn)
for n = 0, 1, 2, . . . ,
where x−1, x0 ∈ (0,∞).
Simsek et al. [19, 20, 21, 24], studied the following problems with
positive initial values
xn+1 =
xn−3
1 + xn−1
,
xn+1 =
xn−5
1 + xn−2
,
xn+1 =
xn−5
1 + xn−1xn−3
,
xn+1 =
xn−3
1 + xnxn−1xn−2
,
for n = 0, 1, 2, . . . , respectively.
In this paper we investigate the following nonlinear difference equation
xn+1 =
xn−(k+1)
1 + xnxn−1...xn−k
for n = 0, 1, 2, . . . (1.1)
where x−(k+1), x−k, ..., x−1, x0 ∈ (0,∞) and k = 0, 1, 2, . . . .
2. Main result
Theorem 1. Consider the difference equation (1.1). Then the following
statements are true.
a) The sequences (x(k+2)n−(k+1)), (x(k+2)n−k), . . . , (x(k+2)n) are de-
creasing and there exist a1, a2, . . . , ak+2 > 0 such that
lim
n→∞
x(k+2)n−(k+1) = a1, lim
n→∞
x(k+2)n−k = a2, . . . , lim
n→∞
x(k+2)n = ak+2.
566 On the recursive sequence . . .
b) (a1, a2, . . . , ak+2, a1, a2, . . . , ak+2, . . .) is a solution of equation (1.1)
of period k+2.
c) a1 × a2 × . . .× ak+2 = 0.
d) If there exists n0 ∈ N such that xn−k ≥ xn+1 for all n > n0, then
lim
n→∞
xn = 0.
e) The following formulas
x(k+2)n+1 = x−(k+1)
(
1− x0x−1...x−k
1+x0x−1...x−k
n∑
j=0
(k+2)j∏
i=1
1
1+xixi−1...xi−k
)
,
.
.
.
x(k+2)n+k+2 = x0
(
1− x−1x−2...x−(k+1)
1+x0x−1...x−k
n∑
j=0
(k+2)j+(k+1)∏
i=1
1
1+xixi−1...xi−k
)
holds.
f) If x(k+2)n+1 → a1 ̸= 0, x(k+2)n+2 → a2 ̸= 0,..., x(k+2)n+k+1 →
ak+1 ̸= 0 then x(k+2)n+k+2 → 0 as n→ ∞.
Proof. a) Firstly, from the equation (1.1), we obtain
xn+1(1 + xnxn−1...xn−k) = xn−(k+1).
If xn, xn−1, ..., xn−k ∈ (0,+∞), then (1 + xnxn−1...xn−k) ∈ (1,+∞).
Since xn+1 < xn−(k+1), n ∈ N , we obtain that lim
n→∞
x(k+2)n−(k+1) =
a1, lim
n→∞
x(k+2)n−(k) = a2, ..., lim
n→∞
x(k+2)n = ak+2.
b) (a1, a2, ..., ak+2, a1, a2, ..., ak+2, ...) is a solution of equation (1.1)
of period k + 2.
c) In view of the equation (1.1), we obtain:
x(k+2)n+1 =
x(k+2)n−(k+1)
1 + x(k+2)n...x(k+2)n−k
.
Taking limit as n→ ∞ on both sides of the above equality, we get:
lim
n→∞
x(k+2)n+1 = lim
n→∞
x(k+2)n−(k+1)
1 + x(k+2)n...x(k+2)n−k
,
D. Simsek, F. G. Abdullayev 567(
lim
n→∞
x(k+2)n−(k+1)
)
×
(
lim
n→∞
x(k+2)n−(k)
)
× ...×
(
lim
n→∞
x(k+2)n
)
= 0.
Then a1 × a2 × ...× ak+2 = 0.
d) If there exists n0 ∈ N such that xn−k ≥ xn+1 for all n > n0, then
a1 ≤ a2 ≤ ... ≤ ak+2 ≤ a1. Since a1 × a2 × ...× ak+2 = 0, we obtain the
result.
e) Subracting xn−(k+1) from the left and right-hand sides of equation
(1.1), we obtain:
xn+1 − xn−(k+1) =
1
1 + xnx−1...xn−k
(xn − xn−(k+2))
and for n > 1 the following formula
xn − xn−(k+2) = (x1 − x−(k+1))
n−1∏
i=1
1
1 + xixi−1...xi−k
(2.1)
holds. Replacing n by (k+2)j in (2.1) and summing from j = 0 to j = n,
we obtain:
x(k+2)n+1 − x−(k+1) = (x1 − x−(k+1))
n∑
j=0
(k+2)j∏
i=1
1
1 + xixi−1...xi−k
,
(n = 0, 1, 2, ...),
. (2.2)
.
.
Also, replacing n by (k + 2)j + (k + 1) in (2.1) and summing from
j = 0 to j = n, we obtain:
x(k+2)n+k+2 − x0 = (xk+1 − x0)
n∑
j=0
(k+2)j+(k+1)∏
i=1
1
1 + xixi−1...xi−k
,
(n = 0, 1, 2, ...).
From the formulas above, we obtain:
568 On the recursive sequence . . .
x(k+2)n+1 = x−(k+1)
(
1− x0x−1...x−k
1+x0x−1...x−k
n∑
j=0
(k+2)j∏
i=1
1
1+xixi−1...xi−k
)
,
.
.
.
x(k+2)n+k+2 = x0(1−
x−1x−2...x−(k+1)
1+x0x−1...x−k
n∑
j=0
(k+2)j+(k+1)∏
i=1
1
1+xixi−1...xi−k
) . . .
(2.3)
f) Suppose that a1 = a2 = ... = ak+2 = 0. By (e) we have:
lim
n→∞
x(k+2)n+1 = lim
n→∞
x−(k+1)
(
1− x0x−1...x−k
1+x0x−1...x−k
n∑
j=0
(k+2)j∏
i=1
1
1+xixi−1...xi−k
)
,
a1 = x−(k+1)
1− x0x−1...x−k
1 + x0x−1...x−k
∞∑
j=0
(k+2)j∏
i=1
1
1 + xixi−1...xi−k
,
a1 = 0 ⇒ 1 + x0x−1...x−k
x0x−1...x−k
=
∞∑
j=0
(k+2)j∏
i=1
1
1 + xixi−1...xi−k
. (2.4)
Similarly,
lim
n→∞
x(k+2)n+2 = lim
n→∞
x−(k)(1−
x0x−1...x−(k+1)
1+x0x−1...x−k
n∑
j=0
(k+2)j+1∏
i=1
1
1+xixi−1...xi−k
),
a2 = x−(k)(1−
x0x−1...x−(k+1)
1 + x0x−1...x−k
∞∑
j=0
(k+2)j+1∏
i=1
1
1 + xixi−1...xi−k
),
a2 = 0 ⇒ 1+x0x−1...x−k
x0x−1...x−(k+1)
=
∞∑
j=0
(k+2)j+1∏
i=1
1
1+xixi−1...xi−k
,
.
.
.
(2.5)
D. Simsek, F. G. Abdullayev 569
Similarly,
lim
n→∞
x(k+2)n+k+1= lim
n→∞
x−1
(
1− x0x−2x−3...x−(k+1)
1+x0x−1...x−k
n∑
j=0
(k+2)j+k∏
i=1
1
1+xixi−1...xi−k
)
,
ak+1 = x−1
1−
x0x−2x−3...x−(k+1)
1 + x0x−1...x−k
∞∑
j=0
(k+2)j+k∏
i=1
1
1 + xixi−1...xi−k
,
ak+1 = 0 ⇒ 1 + x0x−1...x−k
x−2x−3...x−(k+1)
=
∞∑
j=0
(k+2)j+k∏
i=1
1
1 + xixi−1...xi−k
. (2.6)
lim
n→∞
x(k+2)n+k+2= lim
n→∞
x0
(
1− x−1x−2...x−(k+1)
1+x0x−1...x−k
n∑
j=0
(k+2)j+(k+1)∏
i=1
1
1+xixi−1...xi−k
)
,
ak+2 = x0
1−
x−1x−2...x−(k+1)
1 + x0x−1...x−k
∞∑
j=0
(k+2)j+(k+1)∏
i=1
1
1 + xixi−1...xi−k
,
ak+2 = 0 ⇒ 1 + x0x−1...x−k
x−1x−2...x−(k+1)
=
∞∑
j=0
(k+2)j+(k+1)∏
i=1
1
1 + xixi−1...xi−k
. (2.7)
From (2.4) and (2.5), we get:
1 + x0x−1...x−k
x0x−1...x−k
>
1 + x0x−1...x−k
x0x−1...x−(k+1)
,
thus x−(k+1) > x−k, and
.
.
.
Therefore, from (2.6) and (2.7), we have:
1 + x0x−1...x−k
x0x−2...x−(k+1)
>
1 + x0x−1...x−k
x−1x−2...x−(k+2)
,
thus, x−1 > x0.
From here we obtain x−(k+1) > x−k > ... > x−1 > x0. We arrive at a
contradiction which completes the proof of theorem.
570 On the recursive sequence . . .
3. Examples
Consider the following equation xn+1 = xn−3
1+xnxn−1xn−2
which is a
special case of (1.1) for k = 2.
Example 1. If the initial conditions are selected as follows: x[−3] =
0.99999; x[−2] = 0.99998; x[−1] = 0.99997; x[0] = 0.99996. The follow-
ing solutions are obtained:
x(n) = {0.500018, 0.666661, 0.74998, 0.799968, 0.357163, 0.549016, 0.648287,
0.709744, 0.285135, 0.485341, 0.590307, 0.656143, 0.240015, 0.44406,
0.551724, 0.619703, 0.208378, 0.414527, 0.523691, 0.592883, 0.184617,
0.392054, 0.502143, 0.572091, 0.165929, 0.374216, 0.484917, 0.555368,
0.150738, 0.359617, 0.470745, 0.541549, 0.138079, 0.347389, 0.458826,
0.529887, 0.127325, 0.336958, 0.448627, 0.519881, 0.118048, 0.327929,
0.439777, 0.511178, 0.109943, 0.32002, 0.432007, 0.503525, 0.102788,
0.313021, 0.42512, 0.49673, 0.0964144, 0.306775, 0.418964, 0.49065,
0.090695, 0.30116, 0.413424, 0.485172, 0.0855285, 0.296081, 0.408406,
0.480205, 0.0808346, 0.291461, 0.403837, 0.475679, 0.0765488, 0.287237,
0.399657, 0.471536, 0.0726179, 0.283359, 0.395817, 0.467726, 0.0689983,
0.279785, 0.392275, 0.464211, 0.0656534, 0.27648, 0.388997, 0.460956,
0.0625523, 0.273413, 0.385954, 0.457933, 0.0596689, 0.27056, 0.383122,
0.455118, 0.0569808, 0.267898, 0.380478, 0.45249, 0.0544686, 0.265409,
0.378006, 0.450031, 0.0521156, 0.263077, 0.375688, 0.447725, 0.0499071,
0.260887, 0.37351, 0.445558, 0.0478305, 0.258826, 0.371461, 0.443519,
0.0458743, 0.256885, 0.36953, 0.441596, 0.0440287, 0.255052, 0.367707,
0.43978, 0.0422847, 0.25332, 0.365983, 0.438062, 0.0406344, 0.251681,
0.36435, 0.436436, 0.0390707, 0.250127, 0.362803, 0.434894,
0.0375873, 0.248652, 0.361334, 0.43343, . . .}.
The limits of solutions approaching zero due to the fact that the initial
condition is selected. The graph of the solutions is given below:
Example 2. If the initial conditions are selected as follows: x[−3] =
0.1; x[−2] = 0.09; x[−1] = 0.08; x[0] = 0.07; The following solutions
D. Simsek, F. G. Abdullayev 571
Figure 3.1. x(n) graph of the solutions.
are obtained:
x(n) = {0.0999496, 0.0899497, 0.0799497, 0.0699497, 0.0998994, 0.0898994,
0.0798995, 0.0698996, 0.0998492, 0.0898493, 0.0798494, 0.0698495, 0.0997992,
0.0897993, 0.0797995, 0.0697996, 0.0997493, 0.0897495, 0.0797496, 0.0697498,
0.0996996, 0.0896997, 0.0796999, 0.0697001, 0.0996499, 0.0896501, 0.0796503,
0.0696506, 0.0996004, 0.0896006, 0.0796008, 0.0696011, 0.099551, 0.0895512,
0.0795515, 0.0695518, 0.0995017, 0.0895019, 0.0795022, 0.0695026, 0.0994525,
0.0894528, 0.0794531, 0.0694535, 0.0994034, 0.0894037, 0.0794041, 0.0694045,
0.0993544, 0.0893548, 0.0793552, 0.0693557, 0.0993056, 0.089306, 0.0793064,
0.0693069, 0.0992569, 0.0892573, 0.0792578, 0.0692583, 0.0992083, 0.0892087,
0.0792092, 0.0692098, 0.0991598, 0.0891602, 0.0791608, 0.0691614, 0.0991114,
0.0891119, 0.0791124, 0.0691131, 0.0990631, 0.0890637, 0.0790642, 0.0690649,
0.099015, 0.0890155, 0.0790161, 0.0690168, 0.0989669, 0.0889675, 0.0789681,
0.0689689, 0.098919, 0.0889196, 0.0789203, 0.068921, 0.0988712, 0.0888718,
0.0788725, 0.0688733, 0.0988235, 0.0888241, 0.0788248, 0.0688257, 0.0987759,
0.0887766, 0.0787773, 0.0687782, 0.0987284, 0.0887291, 0.0787299, 0.0687308,
0.098681, 0.0886817, 0.0786825, 0.0686835, 0.0986337, 0.0886345, 0.0786353,
0.0686363, 0.0985866, 0.0885874, 0.0785882, 0.0685892, 0.0985395, 0.0885403,
0.0785412, 0.0685422, 0.0984926, 0.0884934, 0.0784943, 0.0684954, 0.0984457,
0.0884466, 0.0784475, 0.0684486, 0.098399, 0.0883999, 0.0784009, 0.068402,
0.0983524, 0.0883533, 0.0783543, 0.0683554, . . .}.
In this case the limits of solutions are not approaching zero, since the
initial condition are hasn’t satisfied. The graph of the solutions is given
below:
572 On the recursive sequence . . .
Figure 3.2. x(n) graph of the solutions.
References
[1] A. M. Amleh, E. A. Grove, G. Ladas, D. A. Georgiou, On the recursive sequence
yn+1 = α +
yn−1
yn
// J. Math. Anal. Appl., 233 (1999), 790–798.
[2] C. Cinar, On the positive solutions of the difference equation xn+1 =
xn−1
1+axnxn−1
//
Appl. Math. Comp., 158 (2004), No. 3, 809–812.
[3] C. Cinar, On the positive solutions of the difference equation xn+1 =
xn−1
−1+axnxn−1
// Appl. Math. Comp., 158 (2004), No. 3, 793–797.
[4] C. Cinar, On the positive solutions of the difference equation xn+1 =
axn−1
1+bxnxn−1
//
Appl. Math. Comp., 156 (2004), No. 3, 587–590.
[5] E. M. Elabbasy, H. El-Metwally, E. M. Elsayed, On the difference equation xn+1 =
axn − bxn
cxn−dxn−1
// Advances in Difference Equation, 2006 (2006), 1–10.
[6] E. M. Elabbasy, H. El-Metwally, E. M. Elsayed, Qualitative behavior of higher
order difference equation // Soochow Journal of Mathematics, 33 (2007), No. 4,
861–873.
[7] E. M. Elabbasy, H. El-Metwally, E. M. Elsayed, Global attractivity and periodic
character of a fractional difference equation of order three // Yokohama Mathe-
matical Journal, 53 (2007), 89–100.
[8] E. M. Elabbasy, H. El-Metwally, E. M. Elsayed, On the difference equation xn+1 =
αxn−1
β+γ
k∏
i=0
xn−i
// J. Conp. Appl. Math., 5 (2007), No. 2, 101–113.
[9] E. M. Elabbasy, E. M. Elsayed, On the Global Attractivity of Difference Equation
of Higher Order // Carpathian Journal of Mathematics, 24 (2008), No. 2, 45–53.
[10] E. M. Elsayed, On the Solution of Recursive Sequence of Order Two // Fasciculi
Mathematici, 40 (2008), 5–13.
[11] E. M. Elsayed, Dynamics of a Recursive Sequence of Higher Order // Communi-
cations on Applied Nonlinear Analysis, 16 (2009), No. 2, 37–50.
D. Simsek, F. G. Abdullayev 573
[12] E. M. Elsayed, Solution and atractivity for a rational recursive sequence // Dis-
crete Dynamics in Nature and Society, 2011 (2011), 1–17.
[13] E. M. Elsayed, On the solution of some difference equation // Europan Journal
of Pure and Applied Mathematics, 4 (2011), No. 3, 287–303.
[14] E. M. Elsayed, On the Dynamics of a higher order rational recursive sequence //
Communications in Mathematical Analysis, 12 (2012), No. 1, 117–133.
[15] E. M. Elsayed, Solution of rational difference system of order two // Mathematical
and Computer Modelling, 55 (2012), 378–384.
[16] C. H. Gibbons, M. R. S. Kulenović, G. Ladas, On the recursive sequence xn+1 =
α+βxn−1
χ+xn
// Math. Sci. Res. Hot-Line, 4 (2000), No. 2, 1–11.
[17] M. R. S. Kulenović, G. Ladas, W.S. Sizer, On the recursive sequence xn+1 =
αxn+βxn−1
χxn+δxn−1
// Math. Sci. Res. Hot-Line, 2 (1998), No. 5, 1–16.
[18] S. Stevic, On the recursive sequence xn+1 =
xn−1
g(xn)
// Taiwanese J. Math., 6
(2002), No. 3, 405–414.
[19] D. Simsek, C. Çınar, İ. Yalçınkaya, On the recursive sequence xn+1 =
xn−3
1+xn−1
//
Int. J. Contemp. Math. Sci., 1 (2006), No. 9–12, 475–480.
[20] D. Simsek, C. Çınar, R. Karataş and İ. Yalçınkaya, On the recursive sequence
xn+1 =
xn−5
1+xn−2
// Int. J. Pure Appl. Math., 27 (2006), No. 4, 501–507.
[21] D. Simsek, C. Çınar, R. Karataş, İ. Yalçınkaya, On the recursive sequence xn+1 =
xn−5
1+xn−1xn−3
// Int. J. Pure Appl. Math., 28 (2006), No. 1, 117–124.
[22] D. Simsek, C. Çınar, İ. Yalçınkaya, On The Recursive Sequence x(n + 1) =
x[n− (5k + 9)]/1 + x(n− 4)x(n− 9) . . . x[n− (5k + 4)] // Taiwanese Journal of
Mathematics, 12 (2008), No. 5, 1087–1098.
[23] D. Simsek, A. Doğan, On A Class of Recursive Sequence // Manas Journal of
Engineering, 2 (2014), No. 1, 16–22.
[24] D. Simsek, M. Eröz, Solutions Of The Rational Difference Equations xn+1 =
xn−3
1+xnxn−1xn−2
// Manas Journal of Engineering, 4 (2016), No. 1, 12–20.
[25] D. Simsek, F.Abdullayev, On The Recursive Sequence xn+1 =
xn−(4k+3)
1+
2∏
t=0
xn−(k+1)t−k
//
Ukrainian Mathematical Bulletin, 13 (2016), No. 3, 376–387.
[26] I. Yalcinkaya, B. D. Iricanin, C. Cinar, On a max-type difference equation //
Discrete Dynamics in Nature and Society, 2007 (2007), doi: 1155/2007/47264,
1–10.
[27] H. D. Voulov, Periodic solutions to a difference equation with maximum // Proc.
Am. Math. Soc., 131 (2002), No. 7, 2155–2160.
574 On the recursive sequence . . .
[28] X. Yang, B. Chen, G. M. Megson, D. J. Evans, Global attractivity in a recursive
sequence // Applied Mathematics and Computation, 158 (2004), 667–682.
Contact information
Dağıstan Simsek Kyrgyz–Turkish Manas University,
Bishkek, Kyrgyzstan,
Selcuk University,
Konya, Turkey
E-Mail: dagistan.simsek@manas.edu.kg
dsimsek@selcuk.edu.tr
Fahreddin G.
Abdullayev
Kyrgyz–Turkish Manas University,
Bishkek, Kyrgyzstan,
Mersin University,
Mersin, Turkey
E-Mail: fabdul@mersin.edu.tr
fahreddin.abdullayev@manas.edu.kg
|