Abstracts

Gespeichert in:
Bibliographische Detailangaben
Datum:2017
Format: Artikel
Sprache:English
Veröffentlicht: Інститут прикладної математики і механіки НАН України 2017
Schriftenreihe:Український математичний вісник
Online Zugang:http://dspace.nbuv.gov.ua/handle/123456789/169381
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Abstracts // Український математичний вісник. — 2017. — Т. 14, № 4. — С. 605-608. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-169381
record_format dspace
spelling irk-123456789-1693812020-06-12T01:26:22Z Abstracts 2017 Article Abstracts // Український математичний вісник. — 2017. — Т. 14, № 4. — С. 605-608. — англ. 1810-3200 http://dspace.nbuv.gov.ua/handle/123456789/169381 en Український математичний вісник Інститут прикладної математики і механіки НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
format Article
title Abstracts
spellingShingle Abstracts
Український математичний вісник
title_short Abstracts
title_full Abstracts
title_fullStr Abstracts
title_full_unstemmed Abstracts
title_sort abstracts
publisher Інститут прикладної математики і механіки НАН України
publishDate 2017
url http://dspace.nbuv.gov.ua/handle/123456789/169381
citation_txt Abstracts // Український математичний вісник. — 2017. — Т. 14, № 4. — С. 605-608. — англ.
series Український математичний вісник
first_indexed 2025-07-15T04:07:27Z
last_indexed 2025-07-15T04:07:27Z
_version_ 1837684435588218880
fulltext Український математичний вiсник Том 14 (2017), № 4, 605 – 608 Abstracts 2010 MSC. 30C75 A. K. Bakhtin. Separating transformation and extremal problems on nonoverlapping simply connected domains // Ukrainian Mathematical Bulletin, 14 (2017), No. 4, 456–471. In the paper we consider one well known problem of maximum of the func- tional In(γ) = rγ (B0, 0) n∏ k=1 r (Bk, ak) , where B0,...,Bn are pairwise disjoint domains in C, a0 = 0, |ak| = 1, k = 1, n are different points of the circle, γ ∈ (0, n], r(B, a) is the inner radius of the domain B ⊂ C relative to the point a. In the case of simply connected domains and n = 2, 3, 4 the solution of this problem for the maximum interval of values of the parameter γ is obtained. References. 23 2000 MSC. 30C75 I. V. Denega, B. A. Klischuk To the problem of extremal partition of the complex plane // Ukrainian Mathematical Bulletin, 14 (2017), No. 4, 472–480. In this paper we consider one classic problem of geometric function theory of a complex variable on maximum of the functional [r (B0, 0) r (B∞,∞)] γ n∏ k=1 r (Bk, ak) , where n ∈ N, n > 2, γ ∈ R+, An = {ak}nk=1 is a system of points such that |ak| = 1, a0 = 0, B0, B∞, {Bk}nk=1 is a system of pairwise non-overlapping domains, ak ∈ Bk ⊂ C, k = 0, n, ∞ ∈ B∞ ⊂ C, r(B, a) is the inner radius of the domain B ⊂ C with respect to the point a ∈ B. In this paper we consider the problem under some weaker restrictions on non-overlapping domains. References. 12 ISSN 1810 – 3200. c⃝ Iнститут прикладної математики i механiки НАН України 606 Abstracts 2010 MSC. 35K59, 35B44, 35K58, 35K65 Ye. A. Yevgenieva. Limiting profile of solutions of quasilinear parabolic equations with flat peaking // Ukrainian Mathematical Bulletin, 14 (2017), No. 4, 481–495. The paper deals with energy (weak) solutions u(t, x) of the class of equations with the model representative (|u|p−1u)t −∆p(u) = 0, (t, x) ∈ (0, T )× Ω, Ω ∈ Rn, n > 1, p > 0 with the following blow-up condition for energy: E(t) := ∫ Ω |u(t, x)|p+1dx+ ∫ t 0 ∫ Ω |∇xu(τ, x)|p+1dxdτ → ∞ as t→ T, where Ω is a smooth bounded domain. In the case of flat peaking, namely, under the following condition E(t) 6 Fα(t) := ω0(T − t)−α ∀ t < T, ω0 > 0, α > 1 p+ 1 , a precise estimate of solution profile has been obtained in a neighborhood of blow-up time t = T . References. 13 2010 MSC. 18B40, 37L05, 22A15, 20D45, 20M15, 20B25 V. M. Gavrylkiv. Automorphisms of semigroups of k-linked upfami- lies // Ukrainian Mathematical Bulletin, 14 (2017), No. 4, 496–514. A family A of non-empty subsets of a set X is called an upfamily if for each set A ∈ A any set B ⊃ A belongs to A. An upfamily L is called k-linked if ∩ F ≠ ∅ for any subfamily F ⊂ L of cardinality |F| ≤ k. The extension Nk(X) consists of all k-linked upfamilies onX. Any associative binary operation ∗ : X×X → X can be extended to an associative binary operation ∗ : Nk(X)× Nk(X) → Nk(X). In the paper, we study automorphisms of the extensions of groups, finite monogenic semigroups and describe the automorphism groups of extensions of null semigroups, almost null semigroups, right zero semigroups and left zero semigroups. References. 25 2010 MSC. 30A10, 30C10, 41A17 M. Imashkyzy, G. A. Abdullayev, F. G. Abdullayev. Bernstein–Walsh type inequalities in unbounded regions with piecewise asymptoti- cally conformal curve in the weighted Lebesgue space // Ukrainian Mathematical Bulletin, 14 (2017), No. 4, 515–531. In this work, we obtain pointwise Bernstein–Walsh-type estimation for al- gebraic polynomials in the unbounded regions with piecewise asymptotically conformal boundary, having exterior and interior zero angles, in the weighted Lebesgue space. References. 28 Abstracts 607 2010 MSC. 20A05, 20F99, 22A15, 06E15, 06E25 I. V. Protasov, K. D. Protasova. Recent progress in subset combi- natorics of groups // Ukrainian Mathematical Bulletin, 14 (2017), No. 4, 532–547. We systematize and analyze some results obtained in Subset Combinatorics of G groups after publications the previous surveys [1–4]. The main topics: the dynamical and descriptive characterizations of subsets of a group relatively their combinatorial size, Ramsey-product subsets in connection with some general concept of recurrence in G-spaces, new ideals in the Boolean algebra PG of all subsets of a group G and in the Stone-Čech compactification βG of G, the combinatorial derivation. References. 28 2010 MSC. 30С62, 31A05, 31A20, 31A25, 31B25, 35Q15 V. I. Ryazanov. The Cauchy–Stieltjes integrals in the theory of analytic functions // Ukrainian Mathematical Bulletin, 14 (2017), No. 4, 548–563. We study various Stieltjes integrals as Poisson–Stieltjes, conjugate Poisson– Stieltjes, Schwartz–Stieltjes and Cauchy–Stieltjes and prove theorems on the existence of their finite angular limits a.e. in terms of the Hilbert–Stieltjes integral. These results hold for arbitrary bounded integrands that are differenti- able a.e. and, in particular, for integrands of the class CBV (countably bounded variation). References. 29 D. Simsek, F. G. Abdullayev. On the recursive sequence xn+1 = = xn−(k+1) 1+xnxn−1...xn−k // Ukrainian Mathematical Bulletin, 14 (2017), No. 4, 564– 574. In this paper a solution of the following difference equation was investigated xn+1 = xn−(k+1) 1 + xnxn−1...xn−k , n = 0, 1, 2, ... where x−(k+1), x−k, ..., x−1, x0 ∈ (0,∞) and k = 0, 1, 2, . . . . References. 13 O. Sukhorukova. Factorization of generalized γ-generating matri- ces // Ukrainian Mathematical Bulletin, 14 (2017), No. 4, 575–594. The class of γ–generating matrices and its subclasses of regular and singular γ–generating matrices were introduced by D. Z. Arov in [8], where it was shown that every γ-generating matrix admits an essentially unique regular–singular factorization. The class of generalized γ-generating matrices was introduced in [14,20]. In the present paper subclasses of singular and regular generalized γ- generating matrices are introduced and studied. As the main result of the paper 608 Abstracts a theorem of existence of regular–singular factorization for rational generalized γ-generating matrix is found. References. 20 2010 MSC. 41A30, 41A50, 41A63 S. Ya. Yanchenko. Order estimates of approximation characteristics of functions from the anisotropic Nikol’skii–Besov classes // Ukrainian Mathematical Bulletin, 14 (2017), No. 4, 595–604. We obtained exact order estimates of the deviation of functions from ani- sotropic Nikol’skii–Besov classes Br p,θ(Rd) from their sections of the Fourier integral. The error of the approximation is estimated in the metric of Lebesgue space L∞(Rd). References. 17