Partial logarithmic derivatives and distribution of zeros of analytic functions in the unit ball of bounded L-index in joint variables
We obtain the sufficient conditions of boundedness of L-index in joint variables for analytic functions in the unit ball, where L : Cⁿ → Rⁿ₊ is a continuous positive vector-function. They give an estimate of the maximum modulus of an analytic function by its minimum modulus on a skeleton in a polydi...
Gespeichert in:
Datum: | 2018 |
---|---|
Hauptverfasser: | Bandura, A.I., Skaskiv, O.B. |
Format: | Artikel |
Sprache: | English |
Veröffentlicht: |
Інститут прикладної математики і механіки НАН України
2018
|
Schriftenreihe: | Український математичний вісник |
Online Zugang: | http://dspace.nbuv.gov.ua/handle/123456789/169396 |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Zitieren: | Partial logarithmic derivatives and distribution of zeros of analytic functions in the unit ball of bounded L-index in joint variables / A.I. Bandura, O.B. Skaskiv // Український математичний вісник. — 2018. — Т. 15, № 2. — С. 177-193. — Бібліогр.: 37 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of UkraineÄhnliche Einträge
-
Partial logarithmic derivatives and distribution of zeros of analytic functions in the unit ball of bounded L-index in joint variables
von: A. I. Bandura, et al.
Veröffentlicht: (2018) -
Analytic in an unit ball functions of bounded L-index in joint variables
von: Bandura, A.I., et al.
Veröffentlicht: (2017) -
Analytic in an unit ball functions of bounded L-index in joint variables
von: A. I. Bandura, et al.
Veröffentlicht: (2017) -
Directional logarithmic derivative and the distribution of zeros of an entire function of bounded L-index in the direction
von: A. I. Bandura, et al.
Veröffentlicht: (2017) -
Analogs of Fricke's theorems for analytic vector-valued functions in the unit ball havin bounded L-index in joint variables
von: V. P. Baksa, et al.
Veröffentlicht: (2019)