Abstracts

Збережено в:
Бібліографічні деталі
Дата:2018
Формат: Стаття
Мова:English
Опубліковано: Інститут прикладної математики і механіки НАН України 2018
Назва видання:Український математичний вісник
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/169404
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Abstracts // Український математичний вісник. — 2018. — Т. 15, № 2. — С. 295-297. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-169404
record_format dspace
spelling irk-123456789-1694042020-06-13T01:27:15Z Abstracts 2018 Article Abstracts // Український математичний вісник. — 2018. — Т. 15, № 2. — С. 295-297. — англ. 1810-3200 http://dspace.nbuv.gov.ua/handle/123456789/169404 en Український математичний вісник Інститут прикладної математики і механіки НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
format Article
title Abstracts
spellingShingle Abstracts
Український математичний вісник
title_short Abstracts
title_full Abstracts
title_fullStr Abstracts
title_full_unstemmed Abstracts
title_sort abstracts
publisher Інститут прикладної математики і механіки НАН України
publishDate 2018
url http://dspace.nbuv.gov.ua/handle/123456789/169404
citation_txt Abstracts // Український математичний вісник. — 2018. — Т. 15, № 2. — С. 295-297. — англ.
series Український математичний вісник
first_indexed 2025-07-15T04:08:45Z
last_indexed 2025-07-15T04:08:45Z
_version_ 1837684517329960960
fulltext Український математичний вiсник Том 15 (2018), № 2, 295 – 297 Abstracts 2010 MSC. Primary 30C62, 31A05, 31A20, 31A25, 31B25, 35Q15; Secondary 30E25, 31C05, 34M50, 35F45 E. S. Afanas’eva, V. I. Ryazanov, R. R. Salimov. To the theory of mappi- ngs of the Sobolev class with the critical index // Ukrainian Mathemati- cal Bulletin, 15 (2018), No. 2, 154–176. It is established that any homeomorphism f of the Sobolev class W 1,1 loc with outer dilatation KO(x, f) ∈ Ln−1 loc is the so-called lower Q-homeomorphism with Q(x) = KO(x, f) and also a ring Q-homeomorphism with Q(x) = Kn−1 O (x, f). This allows us to apply the theory of boundary behavior of ring and lower Q-homeomorphisms. In particular, we have found the conditions imposed on the outer dilatation KO(x, f) and the boundaries of domains under which any homeomorphism of the Sobolev class W 1,1 loc admits continuous or homeomorphic extensions to the boundary. References. 49 2010 MSC. 32A10, 32A40, 32A60 A. I. Bandura, O. B. Skaskiv. Partial logarithmic derivatives and di- stribution of zeros of analytic functions in the unit ball of bounded L-index in joint variables // Ukrainian Mathematical Bulletin, 15 (2018), No. 2, 177–193. We obtain the sufficient conditions of boundedness of L-index in joint vari- ables for analytic functions in the unit ball, where L : Cn → Rn + is a continuous positive vector-function. They give an estimate of the maximum modulus of an analytic function by its minimum modulus on a skeleton in a polydisc and descri- be the behavior of all partial logarithmic derivatives outside some exceptional set and the distribution of zeros. The deduced results are also new for analytic functions in the unit disc of bounded index and l-index. They generalize known results by G. H. Fricke, M. M. Sheremeta, A. D. Kuzyk, and V. O. Kushnir. References. 37 2010 MSC. 42B99 S. O. Chaichenko, A. L. Shydlich. Approximative characteristics of modular Orlicz spaces // Ukrainian Mathematical Bulletin, 15 (2018), No. 2, 194–209. ISSN 1810 – 3200. c⃝ Iнститут прикладної математики i механiки НАН України 296 Abstracts We obtain the exact values of the best approximations, basic widths and Kolmogorov widths for some sets of images of multipliers in the modular Orlicz spaces lM. We give a description of the space SM,N of all multipliers from the space lM to lN. References. 30 2000 MSC. Primary 35C99; Secondary 32W50 T. Kolomiiets, A. Pogorui, R. M. Rodŕıguez-Dagnino. Solution of systems of partial differential equations by using properties of monogenic functions on commutative algebras // Ukrainian Mathematical Bulletin, 15 (2018), No. 2, 210–219. Some systems of differential equations with partial derivatives are studi- ed by using the properties of Gâteaux differentiable functions on commutati- ve algebras. The connection between solutions of systems of partial differenti- al equations and components of monogenic functions on the corresponding commutative algebras is shown. We also give some examples of systems of partial differential equations and find their solutions. References. 8 2010 MSC. 35G15 Z. M. Nytrebych, V. S. Il’kiv, P. Ya. Pukach, O. M. Malanchuk. Differential-symbol method of constructing the quasipolynomial solutions of a two-point problem for a partial differential equation // Ukrainian Mathematical Bulletin, 15 (2018), No. 2, 220–236. We studied the solvability of a problem with local inhomogeneous conditions two-point in time for a homogeneous differential equation which is second-order in time and has generally the infinite order in spatial variables in the case where the set of zeros of the characteristic determinant of the problem is not empty and does not coincide with Cs. The existence of a solution of the problem under the condition that the right-hand sides of the two-point conditions are quasi- polynomials is proved. A differential-symbol method of constructing a solution of the problem is proposed. References. 26 2010 MSC. 2GA33, 46E30, 35A31 A. M. Najafov, A. M. Gasimova. On properties of functions from Lizorkin–Triebel–Morrey type spaces // Ukrainian Mathematical Bulletin, 15 (2018), No. 2, 237–250. We have introduced new functional spaces of the Lizorkin–Triebel–Morrey type, and a Sobolev-type inequality is proved. We have also shown that the generalized derivatives of functions from this spaces satisfy the generalized Hölder condition. References. 17 Abstracts 297 2010 MSC. Primary 35R30; Secondary 35M33, 46E35 L. Pestov, D. Strelnikov. Approximate controllability of the wave equation with mixed boundary conditions // Ukrainian Mathematical Bulletin, 15 (2018), No. 2, 251–263. We consider initial boundary-value problem for acoustic equation in the time space cylinder Ω× (0, 2T ) with unknown variable speed of sound, zero ini- tial data, and mixed boundary conditions. We assume that (Neumann) controls are located at some part Σ × [0, T ], Σ ⊂ ∂Ω of the lateral surface of the cyli- nder Ω × (0, T ). The domain of observation is Σ × [0, 2T ], and the pressure on another part (∂Ω\Σ) × [0, 2T ]) is assumed to be zero for any control. We prove the approximate boundary controllability for functions from the subspace V ⊂ H1(Ω) whose traces have vanished on Σ provided that the observation time is 2T more than two acoustic radii of the domain Ω. We give an explicit procedure for solving Boundary Control Problem (BCP) for smooth harmonic functions from V (i.e., we are looking for a boundary control f which generates a wave uf such that uf (., T ) approximates any prescribed harmonic function from V ). Moreover, using the Friedrichs–Poincaré inequality, we obtain a condi- tional estimate for this BCP. Note that, for solving BCP for these harmonic functions, we do not need the knowledge of the speed of sound. References. 13 2010 MSC. 53A05, 53B21, 53B30, 53B35, 53C22 L. Rýparová, J. Mikeš, A. Sabykanov. On geodesic bifurcations of product spaces // Ukrainian Mathematical Bulletin, 15 (2018), No. 2, 264– 271. The bifurcation is described as a situation where there exist at least two different geodesics going through the given point in the given direction. In the previous works, the examples of local and closed bifurcations are constructed. This paper is devoted to the further study of these bifurcations. We construct an example of n-dimensional (pseudo-) Riemannian and Kählerian spaces which are product ones that admit a local bifurcation of geodesics and also a closed geodesic. References. 6 2010 MSC. 30G35, 57R35 V. S. Shpakivskyi. On monogenic functions defined in different commutative algebras // Ukrainian Mathematical Bulletin, 15 (2018), No. 2, 272–294. The correspondence between a monogenic function in an arbitrary finite-dimensional commutative associative algebra and a finite collection of monogenic functions in a special commutative associative algebra is established. References. 21