Local sub-estimates of solutions to double phase parabolic equations via nonlinear parabolic potentials

For parabolic equations with nonstandard growth conditions, we prove local boundedness of weak solutions in terms of nonlinear parabolic potentials of the right-hand side of the equation.

Gespeichert in:
Bibliographische Detailangaben
Datum:2019
1. Verfasser: Buryachenko, K.O.
Format: Artikel
Sprache:English
Veröffentlicht: Інститут прикладної математики і механіки НАН України 2019
Schriftenreihe:Український математичний вісник
Online Zugang:http://dspace.nbuv.gov.ua/handle/123456789/169430
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Local sub-estimates of solutions to double phase parabolic equations via nonlinear parabolic potentials / K.O. Buryachenko // Український математичний вісник. — 2019. — Т. 16, № 1. — С. 28-45. — Бібліогр.: 23 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-169430
record_format dspace
spelling irk-123456789-1694302020-06-14T01:26:21Z Local sub-estimates of solutions to double phase parabolic equations via nonlinear parabolic potentials Buryachenko, K.O. For parabolic equations with nonstandard growth conditions, we prove local boundedness of weak solutions in terms of nonlinear parabolic potentials of the right-hand side of the equation. 2019 Article Local sub-estimates of solutions to double phase parabolic equations via nonlinear parabolic potentials / K.O. Buryachenko // Український математичний вісник. — 2019. — Т. 16, № 1. — С. 28-45. — Бібліогр.: 23 назв. — англ. 1810-3200 2010 MSC. 35B40, 35B45, 35J62, 35K59 http://dspace.nbuv.gov.ua/handle/123456789/169430 en Український математичний вісник Інститут прикладної математики і механіки НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description For parabolic equations with nonstandard growth conditions, we prove local boundedness of weak solutions in terms of nonlinear parabolic potentials of the right-hand side of the equation.
format Article
author Buryachenko, K.O.
spellingShingle Buryachenko, K.O.
Local sub-estimates of solutions to double phase parabolic equations via nonlinear parabolic potentials
Український математичний вісник
author_facet Buryachenko, K.O.
author_sort Buryachenko, K.O.
title Local sub-estimates of solutions to double phase parabolic equations via nonlinear parabolic potentials
title_short Local sub-estimates of solutions to double phase parabolic equations via nonlinear parabolic potentials
title_full Local sub-estimates of solutions to double phase parabolic equations via nonlinear parabolic potentials
title_fullStr Local sub-estimates of solutions to double phase parabolic equations via nonlinear parabolic potentials
title_full_unstemmed Local sub-estimates of solutions to double phase parabolic equations via nonlinear parabolic potentials
title_sort local sub-estimates of solutions to double phase parabolic equations via nonlinear parabolic potentials
publisher Інститут прикладної математики і механіки НАН України
publishDate 2019
url http://dspace.nbuv.gov.ua/handle/123456789/169430
citation_txt Local sub-estimates of solutions to double phase parabolic equations via nonlinear parabolic potentials / K.O. Buryachenko // Український математичний вісник. — 2019. — Т. 16, № 1. — С. 28-45. — Бібліогр.: 23 назв. — англ.
series Український математичний вісник
work_keys_str_mv AT buryachenkoko localsubestimatesofsolutionstodoublephaseparabolicequationsvianonlinearparabolicpotentials
first_indexed 2025-07-15T04:15:01Z
last_indexed 2025-07-15T04:15:01Z
_version_ 1837684913967464448
fulltext Український математичний вiсник Том 16 (2019), № 1, 28 – 45 Local sub-estimates of solutions to double phase parabolic equations via nonlinear parabolic potentials Kateryna O. Buryachenko (Presented by I. I. Skrypnik) Dedicated to the memory of Professor Bogdan Bojarski Abstract. For parabolic equations with nonstandard growth condi- tions we prove local boundedness of weak solutions in terms of nonlinear parabolic potentials of right-hand side of the equation. 2010 MSC. 35B40, 35B45, 35J62, 35K59. Key words and phrases. Double phase parabolic equations, weak solutions, parabolic potentials, local boundedness, local sub-estimetes. 1. Introduction In this paper we consider a class of parabolic equations with nonstan- dard growth condition and singular lower order term. Let Ω be a domain in Rn, T > 0, set ΩT = Ω× (0, T ). We study solution to the equation ut − divA(x, t, u,∇u) = f(x, t), (x, t) ∈ ΩT . (1.1) Throughout the paper we suppose that the functions A(·, ·, u, ξ) are Le- besgue measurable for all u ∈ R1, ξ ∈ Rn, A(x, t, ·, ·) are continuous for almost all (x, t) ∈ ΩT . We also assume that the following structure conditions are satisfied A(x, t, u, ξ)ξ ≥ c1(|ξ|p + a(x, t)|ξ|q), |A(x, t, u, ξ)| ≤ c2(|ξ|p−1 + a(x, t)|ξ|q−1), (1.2) Received 28.03.2019 This work is supported by grants of Ministry of Education and Science of Ukraine, project numbers are 0118U003138, 0119U100421. ISSN 1810 – 3200. c© Iнститут прикладної математики i механiки НАН України K. O. Buryachenko 29 where c1, c2 are positive constants, a(x, t) ≥ 0, a(x, t) ∈ Cα, α 2 (ΩT ) with some positive α ∈ (0, 1], f ∈ L1(ΩT ), and 2n n+ 1 < p ≤ q < p+ α. (1.3) The main goal of this paper is to establish local boundedness of solu- tions to equation (1.1) in terms of parabolic potential of the right-hand side. This fact is basically characterized by the different types of degener- ate behavior according to the size of a coefficient a(x, t) that determines the “phase”. Indeed, on the set a(x, t) = 0 equation (1.1) has growth of or- der p with respect to the gradient (this is the “p-phase”), and at the same time this growth is of order q when a(x, t) > 0 (this is the “(p, q)-phase”). Before formulating the main results, let us say a few words concerning the history of the problem. In the standard case p = q, the class of equa- tions (1.1) has numerous application for several decades (see e.g. [5–7] and references therein). Starting from the seminal papers by P. Mar- cellini [18, 19], V. V. Zhikov [23] and G. Lieberman [14] during the last decade there has been growing interest and substantial development in the quasilinear elliptic and parabolic equations. The interest grows not only from the calculus of variations but also from a number of recent ap- plications in modeling electrorheological fluids, image processing, theory of elasticity (see e.g. [20]). The basic prototypes of elliptic equations with nonstandard growth conditions are −div ( g(|∇u|) ∇u |∇u| ) = f, ( t τ )p−1 ≤ g(t) g(τ) ≤ ( t τ )q−1 , t ≥ τ ≥ 0, (1.4) −div(|∇u|p−2∇u+ a(x)|∇u|q−2∇u) = f, a(x) ≥ 0. (1.5) The qualitative theory of parabolic equations with nonstandard growth conditions has not been developed yet to the same extend. Local bound- edness of the gradient of solutions to quasilinear parabolic equations of the type ut − div ( g(| ∇u |) ∇u | ∇u | ) = f, (s τ )p−1 ≤ g(s) g(τ) ≤ ( s τ )q−1 , s ≥ τ > 0, (1.6) ut − div(|∇u|p−2∇u+ a(x, t)|∇u|q−2∇u) = f, a(x, t) ≥ 0 (1.7) 30 Local sub-estimates of solutions to double phase... were obtained in [1, 22], Hölder continuity of solutions to equation (1.6) was proved in [8–10]. To describe our results let us remind the reader the definition of a weak solution to equation (1.1). For ξ ∈ Rn set ga(|ξ|) := |ξ|p−1 + a(x, t)|ξ|q−1 and Ga(|ξ|) = |ξ|ga(|ξ|). We will write W 1,Ga(ΩT ) for a class of functions which are weakly differentiable with ∫∫ ΩT Ga(|∇u|)dxdt <∞. We say that u is a weak solution to (1.1) if u ∈ V (ΩT ) := C(0, T ;L2(Ω)) ∩W 1,Ga(ΩT ) and for any interval (t1, t2) ⊂ (0, T ) the integral identity ∫ Ω uϕdx |t2t1 + t2∫ t1 ∫ Ω (−uϕt+A(x, t, u,∇u)∇ϕ)dxdt = t2∫ t1 ∫ Ω ϕfdxdt (1.8) holds true for any testing function ϕ ∈ 0 W 1,Ga (ΩT ) with ϕ,ϕt ∈ L∞(ΩT ). Note that the assumptions that the testing function ϕ and its deriva- tive ϕt must be bounded guarantee the time derivative and the right-hand side of (1.8) are well defined. To formulate our first main result, we define the local parabolic potential. Let (x0, t0) ∈ ΩT for ρ, θ > 0 and let Qρ,θ(x0, t0) := Q− ρ,θ(x0, t0) ∪ Q+ ρ,θ(x0, t0), Q − ρ,θ(x0, t0) := Bρ(x0)× (t0 − θ, t0), Q + ρ,θ(x0, t0) := Bρ(x0)× (t0 + θ, t0). For m > 2n n−1 , ρ > 0 define Dm(ρ;x0, t0) := inf τ>0    1 τm−2 + ρ−n ∫∫ Q ρ,ρmτm−2 (x0,t0) |f |dxdt    . (1.9) Note that the above infimum is attained at some τ ∈ (0,+∞] since the function under the infimum is continuous for τ . Moreover D2(ρ;x0, t0) = ∫∫ Q ρ,ρ2(x0,t0) |f |dxdt. Now for j = 0, 1, 2, ... set ρj := 2−jρ. Following [16] we define the parabolic potential P fm(ρ;x0, t0) := ∞∑ j=0 Dm(ρj;x0, t0). (1.10) Particularly, there exists γ > 1 such that 1 γ P f2 (ρ;x0, t0) ≤ ρ∫ 0 r−n ∫∫ Qρ,ρ2(x0,t0) |f |dxdtdr r ≤ γP f2 (ρ;x0, t0). K. O. Buryachenko 31 So that for m = 2 the introduced potential is equivalent to the truncated Riesz potential used in [2, 4, 12]. Note also that for m > 2 and for a time-independent f the minimum in the the definition of Dm(ρ;x0, t0) is attained at τ = (m− 2)− 1 m−1  ρm−n ∫ Bρ(x0) |f |dx   1 m−1 , so Dm(ρ;x0, t0) = (m− 1)(m− 2) 1 m−1  ρm−n ∫ Bρ(x0) |f |dx   1 m−1 and P fm(ρ;x0, t0) = W f 1,m(ρ;x0), where W f 1,m(ρ;x0) is Wolff potential defined by the formula W f 1,m(ρ;x0) = ∞∑ j=0  ρm−n j ∫ Bρj (x0) f dx   1 m−1 , ρj = ρ 2j , j = 0, 1, .. Remark 1.1. We can estimate P fm by the Lebesgue norm as follows. Let f ∈ Lr(0, T ;Ls(Ω)) for 1 r + n ms < 1. Then ρ−n ∫ Qρ,ρmτm−2 (x0,t0) |f |dx ≤ γτ (m−2)(1− 1 r )ρm(1− 1 r − n ms )||f ||s,r and Dm(ρ;x0, t0) ≤ γ(ρm(1− 1 r − n ms )||f ||s,r) 1 1+(m−2)(1− 1 r ) . Hence if 1 r + n ms < 1, then P fm(ρ;x0, t0) ≤ γ(ρm(1− 1 r − n ms )||f ||s,r) 1 1+(m−2)(1− 1 r ) and limρ→0 sup (x0,t0)∈ΩT P fm(ρ;x0, t0) = 0. The main result of the paper is the local boundedness of the solutions. As it has already mentioned before the behavior of the solution in a neigh- borhood of a point (x0, t0) depends on the value of the function a(x0, t0). In what follows we will distinguish two cases: sup Qρ,ρ2(x0,t0) a(x, t) ≥ 2[a]αρ α 32 Local sub-estimates of solutions to double phase... (so called (p, q)-phase) and sup Qρ,ρ2(x0,t0) a(x, t) ≤ 2[a]αρ α(so called p-phase), here [a]α := sup (x,t),(y,τ)∈ΩT (x,t) 6=(y,τ) |a(x,t)−a(y,τ)| (|x−y|+|t−τ |)α . Theorem 1.1. (Local boundedness of solution in the (p, q)-phase). Let u be a solution of equation (1.1) and assumptions (1.2), (1.3) be fulfilled, q 6= 2. Fix a point (x0, t0) ∈ ΩT such that a0 := a(x0, t0) > 0. Let R := ( a0 2[a]α ) 1 α and Qρ,θ(x0, t0) ⊂ QR,R2(x0, t0) ⊂ Q8R,(8R)2(x0, t0) ⊂ ΩT . Then for any 0 < λ < p nq the following estimate |u(x0, t0)| ≤ γ ( ρq a0θ ) 1 q−2 +γ ( a0 ρn+q ∫∫ Qρ,θ(x0,t0) |u|q−1+λ(q−1)dxdt ) 1 1+λ(q−1) +γ ( 1 ρn+p ∫∫ Qρ,θ(x0,t0) |u|p−1+λ(q−1)dxdt ) 1 1+λ(q−1) +γ(1 + a − 1 q−2 0 )P fq (2ρ;x0; t0) (1.11) holds true with a constant γ > 0 depending only on n, p, q, c1, c2, [a]α and λ. Theorem 1.2. (Local boundedness of solution in the p-phase). Let u be a solution of equation (1.1) and assumptions (1.2), (1.3) be fulfilled, and assume also that q < pn+1 n . Fix a point (x0, t0) ∈ ΩT such that a0 = a(x0, t0) = 0. Then for any 0 < λ < p−n(q−p) nq the following estimate |u(x0, t0)| ≤ γ ( ρp θ ) 1 p−2 + γ   1 ρn+p ∫∫ Qρ,θ(x0,t0) |u|p−1+λ(q−1)dxdt   1 1+λ(q−1) +γ   1 ρn+p ∫∫ Qρ,θ(x0,t0) |u|(q−1)(1+λ)dxdt   p p−n(q−p)+λp(q−1) + γP fp (2ρ;x0, t0) (1.12) hold true with a constant γ depending only on n, p, q, c1, c2, [a]α and λ. The proof of Theorems 1.1, 1.2 is based on the adaption of the Kilpeläinen–Malý technique [11] to the parabolic equations using ideas from [16]. K. O. Buryachenko 33 2. Local boundedness of solutions. Proof of Theorems 1.1, 1.2 2.1. Integral estimates of the solutions For 0 < λ < min(1,m − 1),m > 1, set Wm(s) := ∫ s 0 (1 + z)− 1+λ m dz = m m−1−λ((1 + s) m−1−λ m −1) for any ε ∈ (0, 1) evidently we have Wm(s) ≤ m m− 1− λ s m−1−λ m , s ≤ ε+ γ(ε)W m m−1−λ (s) (2.1) with a constant γ(ε) depending only on ε,m, λ. In what follows we shall also need the following simple inequality. s ≤ ε+ γ(ε) ∫ s 0 (1− (1 + z)−λ)dz, ε, λ ∈ (0, 1) (2.2) with a constant γ(ε) depending only on ε, λ. The next two lemmas are Cacciopolli type estimates adapted to the Kilpeläinen–Maly technique. Lemma 2.1. (p, q-phase). Let the conditions of Theorem 1.1 be ful- filled. Then there exists γ > 0 depending only on the data such that for any λ ∈ (0, 1), k > q, l, δ > 0, any cylinder Q (δ) r := Qr, rq a0 δ2−q ⊂ Qρ,θ(x0, t0) ⊂ QR,R2(x0, t0) and any ζ ∈ C∞ 0 (Q (δ) r ), such that 0 ≤ ζ ≤ 1, |∇ζ| ≤ γr−1, |ζt| ≤ γa0r −qδq−2 one has sup 0<t<T δ−1 ∫ L(t) ∫ u l ( 1− ( 1 + z − l δ )−λ) dzζkdx + δp−2 ∫∫ L ∣∣∣∣∇Wp ( u− l δ )∣∣∣∣ p ζkdxdt + δq−2a0 ∫∫ L ∣∣∣∣∇Wq ( u− l δ )∣∣∣∣ q ζkdxdt ≤ γa0 δq−2 rq ∫∫ L ( 1 + u− l δ )q−1+λ(q−1) ζk−qdxdt + γ δp−2 rp ∫∫ L ( 1 + u− l δ )p−1+λ(q−1) ζk−qdxdt + γδ−1 ∫∫ Q (δ) r |f |dxdt, (2.3) where L := Q (δ) r ∩ {u > l}, L(t) := L ∩ {τ = t}. 34 Local sub-estimates of solutions to double phase... Proof. First note that by our choice of R we have a0 2 = a0 − [a]αR α ≤ a(x, t) ≤ a0+[a]αR α = 3 2a0 for any (x, t) ∈ Q (δ) r ⊂ QR,R2(x0, t0). Testing identify (1.8) by ϕ = (1 − (1 + (u−lδ )+) −λ)ζk, using conditions (1.2) we obtain sup 0<t<T ∫ L(t) u∫ l ( 1− ( 1 + z − l δ )−λ ) dzζkdx +δ−1 ∫∫ L ( 1 + u− l δ )−1−λ |∇u|pζkdxdt δ−1a0 ∫∫ L ( 1 + u− l δ )−1−λ |∇u|qζkdxdt ≤ γa0 δq−1 rq ∫∫ L u− l δ ζk−1dxdt+ γr−1 ∫∫ L |∇u|p−1ζk−1dxdt +γa0r −1 ∫∫ L |∇u|q−1ζk−1dxdt+ γ ∫∫ Q (δ) r |f |dxdt. From this using the Young inequality and by our choice of Wp( u−l δ ), Wq( u−l δ ) we arrive at the required (2.3). Lemma 2.2. (p-phase). Let the conditions of Theorem 1.2 be fulfilled. Then there exists γ > 0 depending only on the data such that for any λ ∈ (0, 1), k ≥ q, l > 0, δ ≥ rσ1 , any cylinder Q (δ) r := Q rδ p−2 p ,rpδ2−p (x0, t0) ⊂ Qρ,θ(x0, t0) and any ζ ∈ C∞ 0 (Q (δ) r ), such that 0 ≤ ζ ≤ 1, |∇ζ| ≤ γr−1, |ζt| ≤ γr−pδp−2 one has sup 0<t<T ∫ L(t) ∫ u l ( 1− ( 1 + z − l δ )−λ ) dzζkdx +δp−2 ∫∫ L ∣∣∣∣∇Wp ( u− l δ )∣∣∣∣ p ζkdxdt ≤ γδp−2r−p ∫∫ L ( 1 + u− l δ )p−1+λ(q−1) ζk−qdxdt +γδq−2r−p ∫∫ L ( 1 + u− l δ )q−1+λ(q−1) ζk−qdxdt+ γδ−1 ∫∫ Q (δ) r |f |dxdt. (2.4) K. O. Buryachenko 35 Proof. Note that by our choice of δ we have an inclusionQ (δ) r ⊂ Qr,r2(x0, t0). Therefore for any (x, t) ∈ Q (δ) r we have a(x, t) ≤ [a]αr α ≤ [a]αr q−p (we have p, q > 2). Testing (1.8) by ϕ = (1− (1+(u−lδ )+) −λ)ζk, using condition (1.2) we obtain sup 0<t<T ∫ L(t) ∫ u l ( 1− ( 1 + z − l δ )−λ ) dzζkdx +δ−1 ∫∫ L a(x, t) ( u− l δ )−1−λ |∇u|qζkdxdt ≤ γ δp−1 rp ∫∫ L u− l δ ζk−1dxdt +γr−1 ∫∫ L |∇u|p−1ζk−1dxdt+ γr−1 ∫∫ L a(x, t)|∇u|q−1ζk−1dxdt +γ ∫∫ Q (δ) r |f |dxdt. Using the Young inequality we arrive at the required (2.4). 2.2. Proof of Theorem 1.1 Fix a number æ ∈ (0, 1) depending only on the data and λ, which will be specified later. For j = 0, 1, 2, ... positive numbers lj and δj are defined inductively as follows. δ−1 := ( ρq a0θ ) 1 q−2 +   a0 æρn+q ∫∫ Qρ,θ(x0,t0) uq−1+λ(q−1)dxdt   1 1+λ(q−1) +   1 æρn+p ∫∫ Qρ,θ(x0,t0) up−1+λ(q−1)dxdt   1 1+λ(q−1) (2.5) and l0 = 0. For j = 0, 1, 2, ..., given δj−1 and lj we define δj and lj+1 as follows. We denote rj := ρ2−j and τj := sup{τ : 1 τ+r −n j ∫∫ Q rj,r q j τq−2 (x0,t0) |f |dxdt = Dq(rj ;x0, t0)}, where Dq(rj;x0, t0) is as in (1.9). For δ ≥ 1 2δj−1 we define Bj := Brj(x0), Q (δ) j := Q rj , r p j a0 δ2−q (x0, t0). Let ζj ∈ C∞ 0 (Q (δ) j ) be such that 36 Local sub-estimates of solutions to double phase... 0 ≤ ζj ≤ 1, ζj = 1 in 1 4Q (δ) j and |∇ζj| ≤ γr−1 j , |∂ζj∂t | ≤ γa0r −q j δq−2. Set Aj(δ) := a0 δq−2 rn+qj ∫∫ L (δ) j ( u− lj δ )q−1+λ(q−1) ζqj dxdt + δp−2 rn+pj ∫∫ L (δ) j ( u− lj δ )p−1+λ(q−1) ζqj dxdt, (2.6) here L (δ) j := Q (δ) j ∩ {u > lj}. If Aj( 1 2δj−1) ≤ æ, we set δj = 1 2δj−1 and δj = lj+1− lj. Since Aj(δ) is continuous and decreasing as a function of δ, then if Aj( 1 2δj−1) > æ there exists δ̂ > 1 2δj−1 such that Aj(δ̂) = æ. In this case we set δj = δ̂ and lj+1 = lj+δj. Further we set Qj = Q (δj) j , Lj = L (δj) j . By our choice of δ−1 and δj , j = 0, 1, 2, ... we have an inclusion Qj ⊂ Qj−1 ⊂ Q0 ⊂ Qρ,θ(x0, t0) for j = 1, 2, ... and in particular ζj−1 ≡ 1 on Qj , j = 1, 2, ..., and moreover Aj(δj) ≤ æ, j = 1, 2, ... (2.7) Claim. Set B = 2n+q, then for any j = 0, 1, 2, ... δj ≤ Bδj−1. (2.8) We establish the claim by induction. By our choice of δ−1 we have for j = 0 A0(Bδ−1) = a0δ −1−λ(q−1) −1 ρn+qB1+λ(q−1) ∫∫ Q0 uq−1+λ(q−1)ζq0dxdt + δ −1−λ(q−1) −1 ρn+pB1+λ(q−1) ∫∫ Q0 up−1+λ(q−1)ζq0dxdt ≤ B−1−λ(q−1)    a0δ −1−λ(q−1) −1 ρn+q ∫∫ Qρ,θ(x0,t0) uq−1+λ(q−1)dxdt + δ −p−1−λ(q−1) −1 ρn+p ∫∫ Qρ,θ(x0,t0) up−1+λ(q−1)dxdt    ≤ B−1æ < æ. K. O. Buryachenko 37 If δ0 = 1 2δ−1 ≤ Bδ−1, and if A0(δ0) = æ > A0(Bδ−1), and since A0δ is decreasing, then δ0 ≤ Bδ−1, and in both cases we obtain δ0 ≤ Bδ−1. Assume that (2.8) holds for i = 1, 2, ..., j − 1, then Aj(Bδj−1) = a0 ( 2 rj−1 )n+q δq−2 j−1 B1+λ(q−1) ∫∫ Lj ( u− lj δj−1 )q−1+λ(q−1) ζqj dxdt + ( 2 rj−1 )n+p δp−2 j−1 B1+λ(q−1) ∫∫ Lj ( u− lj δj−1 )p−1+λ(q−1) ζqj dxdt ≤ 2n+qB−1  a0 δq−2 j−1 rn+qj−1 ∫∫ Lj ( u− lj−1 δj−1 )q−1+λ(q−1) ζqj−1dxdt + δp−2 j−1 rn+pj−1 ∫∫ Lj ( u− lj−1 δj−1 )p−1+λ(q−1) ζqj dxdt   ≤ 2n+qB−1Aj−1(δj−1) ≤ æ2n+qB−1 ≤ æ. If δj = 1 2δj−1 ≤ Bδj−1, Aj(δj) = æ ≥ Aj−1(Bδj−1), and since Aj(δ) is decreasing, then δj ≤ Bδj−1, and in both cases we obtain δj ≤ Bδj−1, which proves the claim. The following lemma is a key in the Kilpeläinen–Malý technique. Lemma 2.3. Let the conditions of Theorem 1.1 be fulfilled. Then for any j ≥ 1 there exists γ > 0 depending only on the data and λ, such that δj ≤ 1 2 δj−1 + γ(1 + a − 1 q−2 0 )Dq(rj ;x0, t0). (2.9) Proof. We shall assume later that δj > 1 2 δj−1, δj > a − 1 q−2 0 1 τj , (2.10) since otherwise (2.9) is evident. The first inequality in (2.10) guarantees that Aj(δj) = æ. First note the inequality δq−2 j rn+qj |Lj |+ δp−2 j−1 rn+pj−1 |Lj | ≤ γæ, j = 1, 2, ... (2.11) Indeed, by (2.7) and (2.8) we have a0 δq−2 j rn+qj |Lj |+ δp−2 j−1 rn+pj−1 |Lj | 38 Local sub-estimates of solutions to double phase... = a0 δq−2 j rn+qj ∫∫ Lj ( lj − lj−1 δj−1 )q−1+λ(q−1) ζqj−1dxdt + δp−2 j−1 rn+pj−1 ∫∫ Lj ( lj − lj−1 δj−1 )p−1+λ(q−1) ζqj−1dxdt ≤ γ(B)  a0 δq−2 j rn+qj ∫∫ Lj−1 ( u− lj−1 δj−1 )q−1+λ(q−1) ζqj−1dxdt + δp−2 j−1 rn+pj−1 ∫∫ Lj−1 ( u− lj−1 δj−1 )p−1+λ(q−1) ζqj−1   dxdt ≤ γ(B)Aj−1(δj−1) ≤ γ(B)æ. By (2.1) and (2.11) we have for any ε ∈ (0, 1) æ = a0 δq−2 j rn+qj ∫∫ Lj ( u− lj δj )q−1+λ(q−1) ζqj dxdt+ δp−2 j rn+pj−1 ∫∫ Lj ( u− lj δj )p−1+λ(q−1) ζqj dxdt ≤ a0γε q−1+λ(q−1)δq−2 j r−n−qj |Lj | +γεp−1+λ(q−1)δ p−2 r −n−q j j |Lj |+ γ(ε)J1 ≤ εγæ + γ(ε)J1, (2.12) where J1 = a0 δq−2 j rn+qj ∫∫ Lj W q q ( u− lj δj )( u− lj δj )λq ζqj dxdt + δp−2 j rn+qj ∫∫ Lj W p p ( u− lj δj )( u− lj δj )λq ζqj dxdt. Further we shall assume that λ satisfies the condition 0 < λ < p nq . By the Sobolev embedding theorem and our choice of λ we obtain J1 ≤ a0γ δq−2 j rn+qj   sup 0<t<T ∫ Lj(t) u− lj δj ζqj dx   q n ∫∫ Lj ∣∣∣∣∇ ( Wq ( u− lj δj ) ζj )∣∣∣∣ q dxdt +γ δp−2 j rn+qj   sup 0<t<T ∫ Lj(t) u− lj δj ζqj dx   p n ∫∫ Lj ∣∣∣∣∇ ( Wp ( u− lj δj ) ζj )∣∣∣∣ p dxdt. (2.13) K. O. Buryachenko 39 By (2.2) and Lemma 2.1 we obtain for every ε1 ∈ (0, 1) sup 0<t<T ∫ Lj(t) u− lj δj ζqj dx ≤ ε1|Bj | + γ(ε1)δ −1 j sup 0<t<T ∫ Lj(t) ∫ u lj ( 1− ( 1 + z − lj δj )−λ ) dzζqj dx ≤ |Bj |  ε1 + γ(ε1)a0 δq−2 j rn+qj ∫∫ Lj ( 1 + u− lj δj )q−1+λ(q−1) dxdt   + γ(ε1) δp−2 j rn+qj ∫∫ Lj ( 1 + u− lj δj )p−1+λ(q−1) dxdt + γ(ε1)δ −1 j r−nj ∫∫ Qj |f |dxdt. (2.14) Further by (2.7), (2.8), (2.10), (2.11) and our choice of ζj we obtain a0 δq−2 j rn+qj ∫∫ Lj ( 1 + u− lj δj )q−1+λ(q−1) dxdt + δp−2 j rn+qj ∫∫ Lj ( 1 + u− lj δj )p−1+λ(q−1) dxdt ≤ γAj−1(δj−1) ≤ γæ. (2.15) Therefore, inequalities (2.13)–(2.15) and Lemma 2.1 imply æ ≤ εγæ+ γ(ε)  æ+ δ−1 j r−nj ∫∫ Qj |f |dxdt   ×     ε1 + γ(ε1)æ + δ−1 j r−nj ∫∫ Qj |f |dxdt   q n +  ε1 + γ(ε1)æ + δ−1 j r−nj ∫∫ Qj |f |dxdt   p n    . (2.16) Now choose ε = 1 16γ , ε1 = 1 16γ(ε) and æ such that γ(ε, ε1)æ p n+γ(ε, ε1)æ q n = 1 16 . From (2.16) it follows that there exists γ > 0 such that δ−1 j r−nj ∫∫ Qj |f |dxdt ≥ 40 Local sub-estimates of solutions to double phase... γæ, hence δj ≤ γr−nj ∫∫ Qj |f |dxdt. By the second inequality in (2.10) we have an inclusion Qj ⊂ Qrj ,rqj τ q−2 j (x0, t0), so δj ≤ γr−nj ∫∫ Q rj,r q j τ q−2 j (x0,t0) |f |dxdt ≤ γDq(rj ;x0, t0). Such a way inequality (2.9) is proved, which completes the proof of Lemma 2.3. Summing up inequality (2.9) for j = 1, 2, ..., J − 1 by (2.8) we obtain lJ ≤ γδ0 + γ(1 + a − 1 q−2 0 ) ∞∑ j=1 Dq(rj ;x0, t0) ≤ γδ−1 + γ(1 + a − 1 q−2 0 )P fq (2ρ;x0, t0). (2.17) Hence we can pass to the limit J → ∞ in (2.17). Let l̄ = limj→∞ lj, from (2.6), (2.7) we conclude that r−n−qj ∫∫ Qj (u−l̄)q−1+λ(q−1)dxdt ≤ γδ 1+λ(q−1) j → 0, j → ∞. Choosing (x0, t0) as a Lebesgue point of the function (u − l̄)q−1+λ(q−1) we conclude that u(x0, t0) ≤ l̄ and hence u(x0, t0) is esti- mated from above by the righthand side of (2.17). This completes the proof of Theorem 1.1. 2.3. Proof of Theorem 1.2 The proof of Theorem 1.2 is similar to that of Theorem 1.1. We note only the differences arising here. Fix a number æ ∈ (0, 1) depending only on the data and λ, which will be specified later. For j = 0, 1, 2, ... positive numbers lj and δj are defined inductively as follows. δ−1 := ( ρp θ ) 1 p−2 +   1 æρn+p ∫∫ Qρ,θ(x0,t0) up−1+λ(q−1)dxdt   1 1+λ(q−1) + ( 1 æρn+p ∫∫ Qρ,θ(x0,t0) uq−1+λ(q−1)dxdt ) p p−n(q−p)+λp(q−1) , (2.18) K. O. Buryachenko 41 and l0 = 0. We denote rj := ρ2−j and τj := sup    τ : 1 τ + r−nj ∫∫ Q rj,r p j τp−2(x0,t0) |f |dxdt    = Dp(rj ;x0, t0), (2.19) where Dp(rj;x0, t0) is defined by (1.9). For δ ≥ 1 2δj−1 we define Bj := Brj(x0), Q (δ) j := Qrj ,rpj δ2−p(x0, t0) and let ζj ∈ C∞ 0 (Q (δ) j ) be such that 0 ≤ ζj ≤ 1, ζj = 1 in 1 4Q (δ) j and |∇ζj| ≤ γr−1 j , |∂ζj∂t | ≤ γr−pj δp−2. Set Aj(δ) := δp−2 rn+pj ∫∫ L (δ) j ( u− lj δ )p−1+λ(q−1) ζqj dxdt + δq−2 rn+pj ∫∫ L (δ) j ( u− lj δ )q−1+λ(q−1) ζqj dxdt, (2.20) where L (δ) j := Q (δ) j ∩ {u > lj}. If Aj( 1 2δj−1) ≤ æ, we set δj = 1 2δj−1 and δj = lj+1 − lj. Since Aj(δ) is continuous and decreasing as a function of δ, then Aj( 1 2δj−1) > æ and there exists δ̂ > 1 2δj−1 such that Aj(δ̂) = æ. In this case we set δj = δ̂. Further we set Qj = Q (δj) j and Lj = L (δj ) j . By our choice of δj , j = 0, 1, 2, ... we have an inclusion Qj ⊂ Qj−1 ⊂ Q0 ⊂ Qρ,θ(x0, t0) for j = 1, 2, ..., in particular, ζj−1 ≡ 0 on Qj, j = 1, 2, ... and Aj(δj) ≤ æ, j = 1, 2, ... (2.21) Similarly to (2.8) we prove δj ≤ Bδj−1, j = 0, 1, 2, ... (2.22) where B = 2σ3 , σ3 = (n+p)p p−n(q−p) . The next Lemma is a key in the Kilpeläinen–Malý technique in the p-phase. Lemma 2.4. Let the conditions of Theorem 1.2 be fulfilled. Then for any j ≥ 1 there exists γ > 0 depending only on the data and λ such that δj ≤ 1 2 δj−1 + γDp(rj ;x0, t0). (2.23) 42 Local sub-estimates of solutions to double phase... Proof. We will assume that δj > 1 2 δj−1, δj > 1 τj , since otherwise inequality (2.23) is evident. First, similarly to (2.11) we obtain (δp−2 j + δq−2 j )r−n−pj |Lj | ≤ γæ, j = 1, 2, ... (2.24) By (2.1) and (2.24) we have for any ε ∈ (0, 1) æ = δp−2 j rn+pj ∫∫ Lj ( u− lj δj )p−1+λ(q−1) ζqj dxdt + δq−2 j rn+pj ∫∫ Lj ( u− lj δj )q−1+λ(q−1) ζqj dxdt ≤ εæ+ γ(ε)J2, (2.25) where J2 = δp−2 j rn+pj ∫∫ Lj W p p ( u− lj δj )( u− lj δj )λqζqj dxdt + δq−2 j rn+pj ∫∫ Lj W p p ( u− lj δj )( u− lj δj )q−p+λqζqj dxdt. Assuming that λ satisfies the condition 0 < λ < p−n(q−p) nq and using the Sobolev embedding theorem we obtain J2 ≤ γ ( δp−2 j + δ q−2+n p (q−p) j ) r−n−pj ×   sup 0<t<T ∫ Lj(t) u− lj δj ζqj dx   p n ∫∫ Lj ∣∣∣∣∇ ( Wp ( u− lj δj ) ζj )∣∣∣∣ p dxdt = γ ( δp−2 j + δ q−2+n p (q−p) j ) r−n−pj J3. (2.26) K. O. Buryachenko 43 By (2.2) and Lemma 2.2 we obtain for every ε, ε1 ∈ (0, 1) γ(ε)δ q−2+n p (q−p) j r−n−pj J3 ≤ γ(ε)  ε1 + γ(ε1)æ + δ − p−n(q−p) p j r−nj ∫∫ Qj |f |dxdt   p n ×  æ+ δ − p−n(q−p) p j r−nj ∫∫ Qj |f |dxdt   . (2.27) Similarly, by (2.2) and Lemma 2.2 we have for any ε, ε1 ∈ (0, 1) γ(ε)δ − p−n(q−p) p j r−n−pj J3 ≤ γ(ε)  ε1 + γ(ε1)æ + δ − p−n(q−p) p j r−nj ∫∫ Qj |f |dxdt   p n ×  æ+ δ − p−n(q−p) p j r−nj ∫∫ Qj |f |dxdt   . (2.28) Choose ε = 1 16γ , ε1 = 1 16γ(ε) and æ such that γ(ε, ε1)æ p n = 1 16 . From (2.25)–(2.28) it follows δj ≤ γ  r−nj ∫∫ Qj |f |dxdt  + γ  r−nj ∫∫ Qj |f |dxdt   p p−n(q−p) . Since δj > 1 τj we have an inclusion Qj ⊂ Qrj ,rpj τ p−2 j (x0, t0). From the previous we obtain δj ≤ γr−nj ∫∫ Q rj,r p j τ p−2 j (x0,t0) |f |dxdt ≤ γDj(rj ;x0, t0), which proves the lemma. Summing inequalities (2.23) for j = 1, 2, ..., J − 1, using (2.22) and passing to the limit J → ∞, we arrive at (1.12). Here (x0, t0) is a Lebesgue point of the function (u− l̄)p−1+λ(q−1), where l̄ = lim j→∞ lj. This completes the proof of Theorem 1.2. 44 Local sub-estimates of solutions to double phase... References [1] V. Bögelein, F. Duzaar, P. Marcellini, Parabolic equations with p, q− growth // J. Math.Pures Appl., 100 (2013), 535–563. [2] V. Bögelein, F. Duzaar, U. Gianazza, Porous medium type equations with measure data and potential estimates // SIAM J. Math.Anal. (6), 45 (2013), 3283–3330. [3] K. O. Buryachenko, I. I. Skrypnik, Pointwise estimates of solutions to the double- phase elliptic equations // Journal of Mathematical Sciences, 222 (2017), 772– 786. [4] K. O. Buryachenko, I. I. Skrypnik, Riesz potentials and pointwise estimates of so- lutions to anisotropic porous medium equation // Nonlinear Analysis, 178 (2019), 56–85. [5] E. DiBenedetto, Degenerate Parabolic Equations, Springer-Verlag, New York, 1993. [6] E. DiBenedetto, J. M. Urbano, V. Vespri, Current issues on singular and de- generate evolutoin equations, in: C. Dafermos, E. FEireisi (Eds.), Evolutionary Equations. Handl. Differ. Equat., Vol. 1, Elsevier, 2004, 169–286. [7] E. DiBenedetto, U. Gianazza, V. Vespri, Harnack’s inequality for degenerate and sinqular parabolic equations, Mongraphs in Mathematics, Springer-Verlag, New York, 2012. [8] S. Hwang, Hölder regularity of solutions of generalized p-Laplacian type parabolic equations, PhD thesis, Iowa State Univ., 2012. [9] S. Hwang, G. M. Lieberman, Hölder continuity of a bounded weak solution of generalized parabolic p-Laplacian equations II: singular case // Elect. J. Diff. Eq., 2015 (2015), No. 288, 1–24. [10] S. Hwang, G. M. Lieberman, Hölder continuity of a bounded weak solution of generalized parabolic p-Laplacian equations I: degenerate case // Elect. J. Diff. Eq., 2015 (2015), No. 287, 1–32. [11] T. Kilpeläinen, J. Malý, The Wiener test and potential estimates for quasilinear elliptic equations // Acta Math., 172 (1994), No. 1, 137–161. [12] T. Kuusi, G. Mingione, Riesz potentials and non-linear parabolic equations // ARMA. (2), 212 (2014), 727–780. [13] O. A. Ladyzhenskaya, V. A. Solonnikov, N. N. Ural’tseva, Linear and Quasilinear Equations of Parabolic Type, Transl. Math. Monogr., vol. 23, AMS, Providence, 1967. [14] G. Lieberman, The natural generalizations of the natural conditions of Ladyzhen- skaya and Ural’tseva for elliptic equations // Comm. in PDE, 16 (1991), No. 2–3, 311–361. K. O. Buryachenko 45 [15] V. Liskevich, I. I. Skrypnik, Harnack inequality and continuity of solutions to quasilinear degenerate parabolic equations with coefficients from Kato-type classes // Journal of Differential Equations, 247 (2009), 2740–2777. [16] V. Liskevich, I. I. Skrypnik, Z. Sobol, Estimates of solutions for the parabolic p- Laplacian equation with measure via parabolic nonlinear potentials, Comm. Pure Appl. Anal., 12 (2013), No. 4, 1731–1744. [17] V. Liskevich, I. I. Skrypnik, Poitwise estimates for solutions to the porous medium equation with measure as a forcing term // Israel J. Math., 194 (2013), 259–275. [18] P. Marcellini, Regularity of minimizers of integrals of the calculus of variations with non standard growth conditions, Arch. Rat. Mech. Analys., 105 (1989), No. 3, 267–284. [19] P. Marcellini, Regularity and existence of solutions of elliptic equations with (p; q)- growth conditions // J. Diff. Equa., 90 (1991), No. 1, 1–30. [20] M. Ruzicka, Electrorheological Fluids: Modeling and Mathematical Theory, Springer, Berlin, 2000. [21] T. Singer, Parabolic equationswith p, q− growth: the subquadratic case // The Quarterly J. of Math., 66 (2015), No. 2, 707–742. [22] V. V. Zhikov, Averaging of functionals of the calculus of variations and elasticity theory // Izv. Akad. Nauk SSSR, Ser. Mat., 50 (1986), 675–710. [23] V. V. Zhikov, On Lavreatiev’s phenomenon // Russ. J. of Math. Physics, 3 (1995), 264–269. Contact information Kateryna Olexandrivna Buryachenko Vasyl’ Stus Donetsk National University, Vinnytsia, Ukraine E-Mail: katarzyna_@ukr.net