On the quasilinear Poisson equations in the complex plane

Збережено в:
Бібліографічні деталі
Дата:2020
Автори: Gutlyanskii, V.Ya., Nesmelova, O.V., Ryazanov, V.I.
Формат: Стаття
Мова:English
Опубліковано: Видавничий дім "Академперіодика" НАН України 2020
Назва видання:Доповіді НАН України
Теми:
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/170255
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:On the quasilinear Poisson equations in the complex plane / V.Ya. Gutlyanskii, O.V. Nesmelova, V.I. Ryazanov // Доповіді Національної академії наук України. — 2020. — № 1. — С. 3-10. — Бібліогр.: 15 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-170255
record_format dspace
spelling irk-123456789-1702552020-07-10T01:28:22Z On the quasilinear Poisson equations in the complex plane Gutlyanskii, V.Ya. Nesmelova, O.V. Ryazanov, V.I. Математика 2020 Article On the quasilinear Poisson equations in the complex plane / V.Ya. Gutlyanskii, O.V. Nesmelova, V.I. Ryazanov // Доповіді Національної академії наук України. — 2020. — № 1. — С. 3-10. — Бібліогр.: 15 назв. — англ. 1025-6415 DOI: doi.org/10.15407/dopovidi2020.01.003 http://dspace.nbuv.gov.ua/handle/123456789/170255 517.5 en Доповіді НАН України Видавничий дім "Академперіодика" НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
topic Математика
Математика
spellingShingle Математика
Математика
Gutlyanskii, V.Ya.
Nesmelova, O.V.
Ryazanov, V.I.
On the quasilinear Poisson equations in the complex plane
Доповіді НАН України
format Article
author Gutlyanskii, V.Ya.
Nesmelova, O.V.
Ryazanov, V.I.
author_facet Gutlyanskii, V.Ya.
Nesmelova, O.V.
Ryazanov, V.I.
author_sort Gutlyanskii, V.Ya.
title On the quasilinear Poisson equations in the complex plane
title_short On the quasilinear Poisson equations in the complex plane
title_full On the quasilinear Poisson equations in the complex plane
title_fullStr On the quasilinear Poisson equations in the complex plane
title_full_unstemmed On the quasilinear Poisson equations in the complex plane
title_sort on the quasilinear poisson equations in the complex plane
publisher Видавничий дім "Академперіодика" НАН України
publishDate 2020
topic_facet Математика
url http://dspace.nbuv.gov.ua/handle/123456789/170255
citation_txt On the quasilinear Poisson equations in the complex plane / V.Ya. Gutlyanskii, O.V. Nesmelova, V.I. Ryazanov // Доповіді Національної академії наук України. — 2020. — № 1. — С. 3-10. — Бібліогр.: 15 назв. — англ.
series Доповіді НАН України
work_keys_str_mv AT gutlyanskiivya onthequasilinearpoissonequationsinthecomplexplane
AT nesmelovaov onthequasilinearpoissonequationsinthecomplexplane
AT ryazanovvi onthequasilinearpoissonequationsinthecomplexplane
first_indexed 2025-07-15T05:22:22Z
last_indexed 2025-07-15T05:22:22Z
_version_ 1837689149763616768
fulltext 3 МАТЕМАТИКА ISSN 1025­6415. Допов. Нац. акад. наук Укр. 2020. № 1: 3—12 © V.Ya. Gutlyanskiĭ, O.V. Nesmelova, V.I. Ryazanov, 2020 https://doi.org/10.15407/dopovidi2020.01.003 UDC 517.5 V.Ya. Gutlyanskiĭ1, O.V. Nesmelova 1, 2, V.I. Ryazanov 1, 3 1 Institute of Applied Mathematics and Mechanics of the NAS of Ukraine, Slov’yansk 2 Donbas State Pedagogical University, Slov’yansk 3 Bogdan Khmelnytsky National University of Cherkasy E­mail: vgutlyanskii@gmail.com, star­o@ukr.net, vl.ryazanov1@gmail.com On the quasilinear Poisson equations in the complex plane Presented by Corresponding Member of the NAS of Ukraine V.Ya. Gutlyanskiĭ First, we study the existence and regularity of solutions for the linear Poisson equations ( ) ( )U z g z∆ = in bounded domains D of the complex plane £ with charges g in the classes 1 loc( ) ( )pL D L D∩ , 1p > . Then, applying the Le­ ray—Schauder approach, we prove the existence of Hölder­continuous solutions U in the class 2, loc ( )pW D for the quasilinear Poisson equations of the form ( ) ( ) ( ( ))U z h z f U z∆ = ⋅ with h in the same classes as g and continuous functions :f →¡ ¡ such that ( ) / 0f t t → as t → ∞. These results can be applied to various problems of mathe­ matical physics. Keywords: potential theory, quasilinear Poisson equations, semilinear equations, anisotropic and inhomogeneous media, quasiconformal mappings. ОПОВІДІ НАЦІОНАЛЬНОЇ АКАДЕМІЇ НАУК УКРАЇНИ МАТЕМАТИКА 1. Introduction. The study of elliptic partial differential equations in two dimensions by the methods of complex analysis and quasiconformal mappings with applications to nonlinear elas­ ticity, gas flow, hydrodynamics, and other sections of natural science has been initiated by M.A. Lavrentiev, L. Bers, L. Nirenberg, I.N. Vekua, B. Bojarski, and others (see, e.g., [1­5] and the references therein). A rather comprehensive treatment of the present state of the theory is given in the excellent book of K. Astala, T. Iwaniec, and G. Martin [6]. In series of our recent papers (see, e.g., [7, 8]), we have proposed another application of the theory of quasiconformal mappings to the the study of semilinear partial differential equa­ tions of the form div [ ( ) ( )] ( ), ,A z u z f u z D D∇ = ∈ ⊆£ , (1) the diffusion term of which is the divergence­form elliptic operator ( )L u , whereas its reac­ tion term ( )f u is a non­linear function. Here, the symmetric matrix function ( ) { ( )},ijA z a z= 4 ISSN 1025­6415. Dopov. Nac. akad. nauk Ukr. 2020. № 1 V.Ya. Gutlyanskiĭ, O.V. Nesmelova, V.I. Ryazanov det ( ) 1A z = , with measurable real­valued entries satisfies the uniform ellipticity condition 2 21 | | ( ) , | | . . , 1 ,A z K a e in D K K ξ 〈 ξ ξ〉 ξ < ∞� � � (2) for every 2 .ξ ∈¡ The set of all such matrix functions is denoted by 2 2( ).KM D× It was shown that, by the chain rule for the composition function u U= ωo , where ω is a quasiconformal mapping that agrees with the matrix function ( )A z , the following basic for­ mula holds: div [ ( ) ( ( ( )))] ( ) ( ( ))A z U z J z U zω∇ ω = ∆ ω , (3) where ( )J zω stands for the Jacobian of the mapping ω. Namely, this formula (understood in the sense of distributions) takes place for all 1,2 loc ( ),U W G∈ 2 2( )KA M D×∈ and quasiconformal homeomorphisms :D Gω → satisfying the Beltrami equation ( ) ( ) ( ) . . ,z zz z z a e in Dω = µ ω (4) where its complex dilatation 22 11 122 ( ) det( ) a a ia z I A − − µ = + (5) satisfies the uniform ellipticity condition 1 | ( ) | . 1 K z K + µ − � (6) Thus, the study of semilinear equations of the form (1) in domains D of a finite area can be reduced in a suitable way to the corresponding investigations of the quasilinear Poisson equa tions of the form ( )U h f U∆ = ⋅ . The latter is the subject of the present paper. Below, D denotes the unit disk { : | | 1}z z∈ <£ in the complex plane £, 0 0( ) : { : | | }R z z z z R= ∈ − <£D for 0z ∈£ and (0, )R ∈ ∞ , : (0)R R=D D . 2. Basic facts from the potential theory. For the sake of completeness, we repeat the fun da­ mental results concerning the potential theory in a plane, given in [8], and strengthen some of them. First of all, we recall that, by Corollary 1 in [8], if, for every Borel set B in £ , ( ) : ( ) ( ) B B g z d m zν = ∫ (7) where :g →£ ¡ is an integrable function with compact support, then ,gN g∆ = (8) where 1 ( ) : ln | | ( ) ( ), 2gN z z w g w d m w= − π ∫ £ (9) 5ISSN 1025­6415. Допов. Нац. акад. наук Укр. 2020. № 1 On the quasilinear Poisson equations in the complex plane in the distributional sense, i.e., 0( ) ( ) ( ) ( ) ( ) ( ) ( ) .gN z z d m z z g z d m z C∞∆ψ = ψ ψ ∈ θ∫ ∫ £ £ £ (10) Here, the function g is called a density of the charge ν , and the function gN is said to be the Newtonian potential of g . Recall also the definition of the formal complex derivatives: 1 1 : , : , . 2 2 i i z x iy z x y x yz    ∂ ∂ ∂ ∂ ∂ ∂ = − = + = +   ∂ ∂ ∂ ∂ ∂∂    (11) The elementary algebraic calculations show their relation to the Laplacian 2 2 2 2 2 2 : 4 4 z z z zx y ∂ ∂ ∂ ∂ ∆ = + = = ∂ ∂ ∂ ∂∂ ∂ . (12) Further, we apply the theory of the well­known integral operators 1 ( ) 1 ( ) ( ) : ( ) , ( ) : ( ) d m w d m w Tg z g w T g z g w z w z w = = π − π −∫ ∫ £ £ defined for integrable functions with a compact support K and studied in detail. The following theorem on the Newtonian potential strengthens Theorem 2 from [8]. It is important to obtain solutions of a higher regularity to the Poisson equations (8), as well as to the corresponding semilinear equations. Here and later on, given a domain D in £ , a function :g D → ¡ is assumed to be exten­ ded onto £ by zero outside of D . Theorem 1. Let D be a bounded domain in £ . Suppose that 1( )g L D∈ . Then 1, loc ( )q gN W∈ £ for all [1, 2)q ∈ , and there exist the generalized derivatives by Sobolev 2 gN z z ∂ ∂ ∂ and 2 gN z z ∂ ∂ ∂ and 2 2 4 4 . .g g g N N N g a e in z z z z ∂ ∂ = ∆ = = ∂ ∂ ∂ ∂ £ . (13) Moreover, loc( )s gN L∈ £ for all [1, )s ∈ ∞ . More precisely, 1 ln | | [1, ) ,g s sN g s⋅ ξ ∀ ∈ ∞P P P P P P� (14) where g sNP P is in rD for all (0, )r ∈ ∞ , and ln | | sξP P is in R r+D if RD ⊆D . If ( )pg L D∈ for some (1, 2]p ∈ , then 2, loc ( )p gN W∈ £ and 1, loc ( ) (1, ) , 2 /(2 ) 2 .gN W q where q p pγ∈ ∀γ ∈ = − >£ (15) In addition, the collection { }gN is locally β ­Hölder equicontinuous in £ for all (0,1 2/ )qβ ∈ − , and the collection { }gN ′ of its first partial derivatives is strictly compact in ( )L Dγ for all (1, )qγ ∈ , if the collection { }g is bounded in ( )pL D . 6 ISSN 1025­6415. Dopov. Nac. akad. nauk Ukr. 2020. № 1 V.Ya. Gutlyanskiĭ, O.V. Nesmelova, V.I. Ryazanov Finally, if ( )pg L D∈ for some > 2p , then 1, loc ( )gN C α∈ £ with ( 2)/p pα = − . Furthermore, the col­ lection { }gN ′ is locally Hölder­equicontinuous in £ with the given α, if { }g is bounded in ( )pL D . Proof. Note that gN is the convolution gψ ∗ , where ( ) ln | |ψ ξ = ξ . Hence, (14) follows (e.g., by Corollary 4.5.2 in [9]). Moreover, g g z z ∂ψ ∗ ∂ψ = ∗ ∂ ∂ and g g z z ∂ψ ∗ ∂ψ = ∗ ∂ ∂ (see, e.g., (4.2.5) in [9]). By elementary calculations, 1 1 1 1 ln | | , ln | | . 2 2 z w z w z z w z z w ∂ ∂ β − = − = ∂ − ∂ − (16) Consequently, ( ) ( )1 1 ( ) , ( ) . 4 4 g gN z N z Tg z T g z z z ∂ ∂ = = ∂ ∂ (17) Thus, the rest conclusions for 1( )g L D∈ follow by Theorems 1.13—1.14 in [5]. Next, if ( )pg L D∈ with (1, 2]p ∈ , then 1, loc ( )gN W γ∈ £ for all (1, )qγ ∈ , where 2 /(2 ) 2q p p= − > 2 /(2 ) 2q p p= − > , by Theorem 1.27, (1.27) in [5] and, moreover, 2, loc ( )p gN W∈ £ by Theorems 1.36—1.37 in [5]. In addition, a collection { }gN is locally β ­H lder­equicontinuous in £ for all (0,1 2/ )qβ ∈ − (see, e.g., Lemma 2.7 in [3]), and the collection { }gN ′ of its first partial derivatives is strictly compact in ( )L Dγ for all (1, )qγ ∈ , if the collection { }g is bounded by the norm in ( )pL D (see, e.g., Theorem 1.4.3 in [10] and Theorem 1.27 in [5]). The last item of Theorem 1 was derived in Theorem 2 from [8]. Remark 1. Note, generally speaking, that 2,1 locgN W∉ and gN C∉ , if 1( )g L∈ £ (see, for in­ stance, Example 7.5 in [11], and the example in Remark 2 from [8]). Corollary 1. Let D be a subdomain of D , :g D → ¡ be in 1( )L D and in loc( )pL D for so me 1p > . Then 2, loc ( )p gN W D∈ and satisfies (13) a.e. in D . Moreover, 1, loc ( )q gN W D∈ for 2q > , and gN is locally Hölder­continuous in D . Furthermore, 1, loc ( )gN C Dα∈ with ( 2)/p pα = − , if loc( )pg L D∈ for 2p > . In addition, the collection { }gN is locally β ­Hölder­equicontinuous in D for all (0,1 2/ )β ∈ − (0,1 2/ )qβ ∈ − , and the collection { }gN ′ of its first partial derivatives is strictly compact in loc( )L Dγ for all (1, )qγ ∈ , if a collection { }g is bounded in 1( )L D and in loc( )pL D for some (1, 2]p ∈ , where q is defined in (15). Finally, the collection { }gN ′ is locally α ­Hölder­equicontinuous in D with the given α , if a collection { }g is bounded in 1( )L D and in loc( )pL D for 2p > . Proof. Given 0z D∈ and 00 dist( , )R z D< < ∂ , 1 2g g gN N N= + with 2 1:g g g= − and 1 :g g= ⋅χ, where χ is the characteristic function of the disk 0( )R zD . The first summand satisfies all de­ sired properties by Theorem 1, and the second one is a harmonic function in 0( )R zD (see, e.g., Theorem 3.1.2 in [12]). Thus, the first part follows. Under the proof of the rest part, the same decomposition is applied. However, in the case we need the following 2 explicit estimates for the second summand in a smaller disk 0( )r zD , (0, )r R∈ , 2 2 12 2 2 1 2 12 2 1 1 1 | ( ) ( ) | | | 2 ( ) g g g g z z z zN N g N z N z dz dz z z z z R r ∂ ∂ − + − ∂ ∂ π −∫ ∫ P P � � 7ISSN 1025­6415. Допов. Нац. акад. наук Укр. 2020. № 1 On the quasilinear Poisson equations in the complex plane and, since the function 2Tg is analytic in 0( )r zD and the function 2 2T g Tg= (for the real­va­ lued function 2g ) is anti­analytic in 0( )r zD , similarly, 2 2 2 12 2 1 2 12 1 1 1 | ( ) ( ) | | | . 4 4 ( ) g g z z gTg N z N z dz z z z R r ∂ − −′ ′ ∂ π −∫ P P � � Here, we denote, by 2gN ′ , any of the first partial derivatives of 2gN (see (11)): , , ,i z x iy x z z y z z ∂ ∂ ∂ ∂ ∂ ∂ = + = ⋅ − = +  ∂ ∂ ∂ ∂ ∂ ∂ take relation (16) into account, and calculate the given integrals over the segment 1 2 0[ , ] ( )rz z D z⊂ of the straight line going through 1z , 2 0( )rz z∈D . 3. On the solvability of quasilinear Poisson equations. In this section, we study the sol­ vability problem for quasilinear Poisson equations of the form ( ).U hf U∆ = The well­known Le ray—Schauder approach allows us to reduce the problem to the study of the corresponding linear Poisson equation from the previous section. Theorem 2. Let :h →£ ¡ be a function in the class ( )pL £ for 1p > with compact support. Suppose that a function :f →¡ ¡ is continuous and ( ) 0 .lim t f t t→∞ = (18) Then there is a continuous function :U →£ ¡ in the class 2, loc ( )pW £ such that ( ) ( ) ( ( )) . .U z h z f U z a e∆ = (19) and gU N= , where :g →£ ¡ is a function in pL whose support is in the support of h, and the up­ per bound of pgP P depends only on phP P and on the function f . Moreover, 1, loc ( )qU W∈ £ for so me 2q > , and U is locally Hölder­continuous. Furthermore, 1, loc ( )U C α∈ £ with ( 2)/p pα = − , if > 2p . In particular, 1, loc ( )U C α∈ £ for all (0,1)α = , if h is bounded in Theorem 2. Proof. If 0ph =P P or 0cf =P P , then any constant function U in £ gives the desired solution of (19). Thus, we may assume that 0ph ≠P P and 0cf ≠P P . Set * | | ( ) | ( ) |max t s f s f t= � , : [0, )s +∈ = ∞¡ . Then the function :f + + ∗ →¡ ¡ is continuous and nondecreasing. Moreover, *( ) / 0f s s → as s → ∞ by (18). By Theorem 1 in [8], we obtain a family of operators ( ; ) : ( ) ( )p p h hF g L Lτ →£ £ , ( )p hL £ is the subspace of ( )pL £ with supports in the support of h , ( ; ) : ( ) [0,1]gF g h f Nτ = τ ⋅ ∀τ ∈ (20) which satisfies all groups of hypotheses H1­H3 of Theorem 1 in [13]. Indeed: H1. First of all, ( ; ) : ( )p hF g Lτ £ for all [0,1]τ ∈ and ( )p hg L∈ £ , because, by Theorem 1 in [8], the function ( )gf N is continuous and *( ; ) ( ) [0,1] ,p p pF g h f M gτ < ∞ ∀τ ∈P P P P P P� 8 ISSN 1025­6415. Dopov. Nac. akad. nauk Ukr. 2020. № 1 V.Ya. Gutlyanskiĭ, O.V. Nesmelova, V.I. Ryazanov where M is the constant from estimate (19) in [8]. Thus, by Theorem 1 from [8] in combination with the Arzela—Ascoli theorem (see, e.g., Theorem IV.6.7 in [14]), the operators ( ; )F g τ are completely continuous for every [0,1]τ ∈ and even uniformly continuous in the parameter [0,1]τ ∈ . H2. The index of the operator ( ; 0)F g is obviously equal to 1 . H3. By Theorem 1 in [8], we have, for solutions of the equations ( ; )g F g= τ : *( )p p pg h f M gP P P P P P� , i.e., *( ) 1p p p f M g M g M h P P P P P P � . (21) Hence, pgP P is bounded in the parameter [0,1]τ ∈ by condition (18). Thus, by Theorem 1 in [13], there is a function ( )p hg L D∈ with ( ;1)F g g= , and, by Theo­ rem 1, the function : gU N= gives the desired solution of (19). Theorem 3. Let D be a domain in D , :h D → ¡ be in 1 loc( ) ( ) p L D L D∩ , 1p > , and let :f →¡ ¡ satisfy the hypothesis of Theorem 2. Then there is a weak solution :U D → ¡ of the quasilinear Poisson equation (19) in the class 1, loc( ) ( )qC D W D∩ for some 2q > which is locally Hölder­con­ tinuous in D . Proof. Let kD be an expanding sequence of domains in £ with kD D⊂ , 1, 2,k = … , exha us­ ting D , i.e. 1 k k D D ∞ = =∪ . Let us extend h by zero outside of D . Set k kh h= χ , where kχ is a cha­ racteristic function of kD in £, and k gk U N= , where kg corresponds to kh by Theorem 2. Now, by Corollary 1, the family of functions { }gk N is H lder­equicontinuous on each mD , 1, 2,m = … . Moreover, by Theorems 1 and 2, as well as by the H lder integral inequality, we have 1 1 1 1 1 1 1 1 ln | | ( ) ln | | ( ) ( ) ( ) p g k pk L L L N g h − ε +ε +ε ⋅ ξ π Ψ ⋅ ξP P P P P P P P P P� � D D D (22) for small enough 0ε > such that 1Dε ⊂D , where the function : + +Ψ →R R depends only on f . Hence, for each 1, 2,k = …, there is a point kz ε∈D with 1 2 1 1 | ( ) | : ( ) ln | | / ( ) p p g k pk L N z c h − + ε = π Ψ ⋅ ξ πεP P P P� D , because, by (22), the mean integral value of | ( ) |g kk N z over the disk εD cannot be greater than the given number c . Combining the latter fact with H lder­equicontinuity of the sequence kgN , 1, 2,k = … , on each mD , 1, 2,m = … , we obtain also its boundedness. Thus, by the Arzela— Ascoli theorem (see, e.g., Theorem IV.6.7 in [14]), the family of functions { }gk N is compact on each mD , 1, 2,m = … . Without loss of generality, we may assume that (1, 2]p ∈ . Then, by Corollary 1, the Newtonian potential { }gk N , 1, 2,m = … , is in the class 1, loc qW for some 2q > , and the family { }gk N ′ is also compact on each mD , 1, 2,m = … by the norm of qL . Consequently, the sequence { }gk N is com­ pact on each mD , 1, 2,m = … by any norm ⋅P P of 1, qW , too (see, e.g., Theorem 2.5.1 in [15]). Next, let us apply the so­called diagonal process. Namely, let (1) kU , 1, 2,k = … , be a subse­ quence of { }gk N that converges uniformly to a function 1:U D → R by the norm ⋅P P on the 9ISSN 1025­6415. Допов. Нац. акад. наук Укр. 2020. № 1 On the quasilinear Poisson equations in the complex plane domain 1D . Of course, we may assume that (1) 1/CkU U k− <P P , as well as (1) 1/kU U k− <P P for all 1, 2,k = … . Similarly, a subsequence (2) kU of (1) kU with respect to the domain 2D is defined. Let us continue the process by induction and, finally, consider the diagonal subsequence ( ): m m mU U= , 1, 2,m = … of the sequence gk N . It is clear by the construction that |m DU converges to a function :U D → ¡ locally uni­ formly and also in 1, loc ( )qW D , 2q > . Thus, 1, loc( ) ( )qU C D W D∈ ∩ , and, consequently, U is local ly H l der­continuous in D . Moreover, U is a weak solution of Eq. (19) in the domain D . Indeed, by (10) and the definition of generalized derivatives, we have that mU satisfy the relations 0( ), ( ) ( ) ( ) ( ( )) ( ) ( ) 0 ( )m m m D D U z z dm z h z f U z z dm z C D∞〈∇ ∇ψ 〉 + ψ = ∀ψ ∈∫ ∫ . Passing to the limit as m → ∞ , we obtain the desired conclusion. This work was partially supported by grants of Ministry of Education and Science of Uk raine, project number is 0119U100421. REFERENCES 1. Bers, L. & Nirenberg, L. (1954, August). On a representation theorem for linear elliptic systems with dis­ continuous coefficients and its applications. Convegno Internazionale sulle equazioni lineari alle derivate parziali, Trieste (pp. 111­140). Rome: Edizioni Cremonese. 2. Bojarski, B. V. (1955). Homeomorphic solutions of Beltrami systems. Dokl. Akad. Nauk SSSR (N.S.), 102, pp. 661­664 (in Russian). 3. Bojarski, B. & Iwaniec, T. (1983). Analytical foundations of the theory of quasiconformal mappings in n¡ . Ann. Acad. Sci. Fenn. Ser. A. I. Math., 8, No. 2, pp. 257­324. 4. Lavrentiev, M. (1938). Sur une crit re différentiel des transformations homéomorphes des domains à trois dimensions. Dokl. Acad. Nauk. SSSR, 20, pp. 241­242. 5. Vekua, I. N. (1962). Generalized analytic functions. Oxford, New York: Pergamon Press. 6. Astala, K., Iwaniec, T. & Martin, G. (2009). Elliptic partial differential equations and quasiconformal map­ pings in the plane. Princeton Mathematical Series (Vol. 48). Princeton, NJ: Princeton University Press. 7. Gutlyanskii, V. & Nesmelova, O. & Ryazanov, V. (2018). On quasiconformal maps and semilinear equations in the plane. J. Math. Sci., 229, No. 1, pp. 7­29. 8. Gutlyanskii, V. Ya., Nesmelova, O. V. & Ryazanov, V. I. (2018). On the regularity of solutions of quasili near Pois son equations. Dopov. Nac. akad. nauk Ukr., No. 10, pp. 9­17. https://doi.org/10.15407/dopovidi2018.10.009 9. H rmander, L. (1983). The analysis of linear partial differential operators. I. Distribution theory and Fourier analysis. Grundlehren der Mathematischen Wissenschaften. (Vol. 256). Berlin: Springer. 10. Sobolev, S. L. (1991). Some applications of functional analysis in mathematical physics. Mathematical Monographs. (Vol. 90). Providence, RI: AMS. 11. Giaquinta, M. & Martinazzi, L. (2012). An introduction to the regularity theory for elliptic systems, har­ monic maps and minimal graphs. 2nd ed. Lecture Notes (Scuola Normale Superiore) (Vol. 11). Pisa: Edi­ zioni della Normale. 12. Ransford, T. (1995). Potential theory in the complex plane. London Mathematical Society Student Texts. (Vol. 28). Cambridge: Cambridge University Press. 13. Leray, J. & Schauder, Ju. (1934). Topologie et quations fonctionnelles. Ann. Sci. Ecole Norm. Sup., 51, No. 3, pp. 45­78. 14. Dunford, N. & Schwartz, J.T. (1958). Linear operators. Pt. I. General theory. Pure and Applied Mathema­ tics. (Vol. 7). New York: Interscience. 15. Mihlin, S. G. (1977). Linear partial differential equations. Moscow: Vysshaya Shkola (in Russian). Received 20.10.2019 10 ISSN 1025­6415. Dopov. Nac. akad. nauk Ukr. 2020. № 1 V.Ya. Gutlyanskiĭ, O.V. Nesmelova, V.I. Ryazanov В.Я. Гутлянський 1, О.В. Нєсмєлова 1, 2, В.І. Рязанов 1, 3 1 Інститут прикладної математики і механіки НАН України, Слов’янськ 2 Донбаський державний педагогічний університет, Слов’янськ 3 Черкаський національний університет ім. Богдана Хмельницького E­mail: vgutlyanskii@gmail.com, star­o@ukr.net, vl.ryazanov1@gmail.com ПРО КВАЗІЛІНІЙНІ РІВНЯННЯ ПУАССОНА В КОМПЛЕКСНІЙ ПЛОЩИНІ Вивчено існування і регулярність розв’язків для лінійних рівнянь Пуассона виду ( ) ( )U z g z∆ = в обме­ жених областях D комплексної площини £ із зарядами g в класах 1 loc( ) ( )pL D L D∩ , 1p > . З викорис­ танням підходу Лере—Шаудера доведено існування неперервних за Гельдером розв’язків U в класі 2, loc ( )pW D для квазілінійних рівнянь Пуассона виду ( ) ( ) ( ( ))U z h z f U z∆ = ⋅ з h із того самого класу, що і g , та неперервними функціями :f →¡ ¡ такими, що ( ) / 0f t t → при t → ∞ . Отримані результати мо­ жуть бути застосовані до різномантіних задач математичної фізики. Ключові слова: теорія потенціалу, квазілінійні рівняння Пуассона, напівлінійні рівняння, анізотропні та неоднорідні середовища, квазіконформні відображення. В.Я. Гутлянский 1, О.В. Несмелова 1, 2, В.И. Рязанов 1, 3 1 Институт прикладной математики и механики НАН Украины, Славянск 2 Донбасский государственный педагогический университет, Славянск 3 Черкасский национальный университет им. Богдана Хмельницкого E­mail: vgutlyanskii@gmail.com, star­o@ukr.net, vl.ryazanov1@gmail.com О КВАЗИЛИНЕЙНЫХ УРАВНЕНИЯХ ПУАССОНА В КОМПЛЕКСНОЙ ПЛОСКОСТИ Изучено существование и регулярность решений для линейних уравнений Пуассона вида ( ) ( )U z g z∆ = в ограниченных областях D комплексной плоскости £ с зарядами g в классах 1 loc( ) ( )pL D L D∩ , 1p > . С применением подхода Лере—Шаудера доказано существование непрерывных по Гёльдеру решений U в классе 2, loc ( )pW D для квазилинейных уравнений Пуассона вида ( ) ( ) ( ( ))U z h z f U z∆ = ⋅ с h из того же класса, что и g , и непрерывными функциями :f →¡ ¡ такими, что ( ) / 0f t t → при t → ∞ . Получен­ ные результаты могут быть применены к различным задачам математической физики. Ключевые слова: теория потенциала, квазилинейные уравнения Пуассона, полулинейные уравнения, ани­ зотропные и неоднородные среды, квазиконформные отображения.