Estimation of radiation risks under photonuclear production of 67Cu and 99Mo isotopes

The activated bremsstrahlung converter and isotopic target are the main sources of radiation hazard in the isotope production at electron accelerators. In experiments at the NSC KIPT accelerators KUT-30 and LU-40m, intended to produce 99Mo and 67Cu isotopes in the targets based on natural Mo and Zn,...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2010
Автори: Ayzatskiy, M.I., Dovbnya, A.N., Tenishev, A.Eh., Torgovkin, A.V., Uvarov, V.L., Shevchenko, V.A., Shramenko, B.I., Ehst, D.
Формат: Стаття
Мова:English
Опубліковано: Національний науковий центр «Харківський фізико-технічний інститут» НАН України 2010
Теми:
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/17031
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Estimation of radiation risks under photonuclear production of 67Cu and 99Mo isotopes / M.I. Ayzatskiy, A.N. Dovbnya, A.Eh. Tenishev, A.V. Torgovkin, V.L. Uvarov, V.A. Shevchenko, B.I. Shramenko, D. Ehst // Вопросы атомной науки и техники. — 2010. — № 3. — С. 130-134. — Бібліогр.: 12 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-17031
record_format dspace
spelling irk-123456789-170312011-02-19T12:03:46Z Estimation of radiation risks under photonuclear production of 67Cu and 99Mo isotopes Ayzatskiy, M.I. Dovbnya, A.N. Tenishev, A.Eh. Torgovkin, A.V. Uvarov, V.L. Shevchenko, V.A. Shramenko, B.I. Ehst, D. Применение ускорителей The activated bremsstrahlung converter and isotopic target are the main sources of radiation hazard in the isotope production at electron accelerators. In experiments at the NSC KIPT accelerators KUT-30 and LU-40m, intended to produce 99Mo and 67Cu isotopes in the targets based on natural Mo and Zn, the output devices were exposed to radiation. Induced activities of the tantalum converter, of targets and cooling water were measured. The exposure dose rates provided by each element and the activity decrease after the exposure were determined. Основными источниками радиационной опасности при производстве изотопов на ускорителе электронов являются активированные конвертер тормозного излучения и изотопная мишень. На ускорителях КУТ-30 и ЛУ-40М ННЦ ХФТИ проведено облучение экспериментальных выходных устройств для получения изотопов 99Мо и 67Сu в мишенях на основе природных Мо и Zn. Исследована наведенная активность конвертера из тантала, мишеней и охлаждающей воды. Определена мощность экспозиционной дозы, создаваемая каждым элементом, а также скорость ее снижения после облучения. Основними джерелами радіаційної небезпеки при виробництві ізотопів на прискорювачі електронів є активовані конвертер гальмівного випромінювання та ізотопна мішень. На прискорювачах КУТ-30 і ЛУ-40M ННЦ ХФТІ проведено опромінювання експериментальних вихідних пристроїв для отримання ізотопів 99Мо і 67Сu в мішенях на основі природних Мо і Zn. Досліджена наведена активність конвертера з танталу, мішеней і води, що охолоджує. Визначена потужність експозиційної дози, що створюється кожним елементом, а також швидкість її зниження після опромінення. 2010 Article Estimation of radiation risks under photonuclear production of 67Cu and 99Mo isotopes / M.I. Ayzatskiy, A.N. Dovbnya, A.Eh. Tenishev, A.V. Torgovkin, V.L. Uvarov, V.A. Shevchenko, B.I. Shramenko, D. Ehst // Вопросы атомной науки и техники. — 2010. — № 3. — С. 130-134. — Бібліогр.: 12 назв. — англ. 1562-6016 http://dspace.nbuv.gov.ua/handle/123456789/17031 en Національний науковий центр «Харківський фізико-технічний інститут» НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
topic Применение ускорителей
Применение ускорителей
spellingShingle Применение ускорителей
Применение ускорителей
Ayzatskiy, M.I.
Dovbnya, A.N.
Tenishev, A.Eh.
Torgovkin, A.V.
Uvarov, V.L.
Shevchenko, V.A.
Shramenko, B.I.
Ehst, D.
Estimation of radiation risks under photonuclear production of 67Cu and 99Mo isotopes
description The activated bremsstrahlung converter and isotopic target are the main sources of radiation hazard in the isotope production at electron accelerators. In experiments at the NSC KIPT accelerators KUT-30 and LU-40m, intended to produce 99Mo and 67Cu isotopes in the targets based on natural Mo and Zn, the output devices were exposed to radiation. Induced activities of the tantalum converter, of targets and cooling water were measured. The exposure dose rates provided by each element and the activity decrease after the exposure were determined.
format Article
author Ayzatskiy, M.I.
Dovbnya, A.N.
Tenishev, A.Eh.
Torgovkin, A.V.
Uvarov, V.L.
Shevchenko, V.A.
Shramenko, B.I.
Ehst, D.
author_facet Ayzatskiy, M.I.
Dovbnya, A.N.
Tenishev, A.Eh.
Torgovkin, A.V.
Uvarov, V.L.
Shevchenko, V.A.
Shramenko, B.I.
Ehst, D.
author_sort Ayzatskiy, M.I.
title Estimation of radiation risks under photonuclear production of 67Cu and 99Mo isotopes
title_short Estimation of radiation risks under photonuclear production of 67Cu and 99Mo isotopes
title_full Estimation of radiation risks under photonuclear production of 67Cu and 99Mo isotopes
title_fullStr Estimation of radiation risks under photonuclear production of 67Cu and 99Mo isotopes
title_full_unstemmed Estimation of radiation risks under photonuclear production of 67Cu and 99Mo isotopes
title_sort estimation of radiation risks under photonuclear production of 67cu and 99mo isotopes
publisher Національний науковий центр «Харківський фізико-технічний інститут» НАН України
publishDate 2010
topic_facet Применение ускорителей
url http://dspace.nbuv.gov.ua/handle/123456789/17031
citation_txt Estimation of radiation risks under photonuclear production of 67Cu and 99Mo isotopes / M.I. Ayzatskiy, A.N. Dovbnya, A.Eh. Tenishev, A.V. Torgovkin, V.L. Uvarov, V.A. Shevchenko, B.I. Shramenko, D. Ehst // Вопросы атомной науки и техники. — 2010. — № 3. — С. 130-134. — Бібліогр.: 12 назв. — англ.
work_keys_str_mv AT ayzatskiymi estimationofradiationrisksunderphotonuclearproductionof67cuand99moisotopes
AT dovbnyaan estimationofradiationrisksunderphotonuclearproductionof67cuand99moisotopes
AT tenishevaeh estimationofradiationrisksunderphotonuclearproductionof67cuand99moisotopes
AT torgovkinav estimationofradiationrisksunderphotonuclearproductionof67cuand99moisotopes
AT uvarovvl estimationofradiationrisksunderphotonuclearproductionof67cuand99moisotopes
AT shevchenkova estimationofradiationrisksunderphotonuclearproductionof67cuand99moisotopes
AT shramenkobi estimationofradiationrisksunderphotonuclearproductionof67cuand99moisotopes
AT ehstd estimationofradiationrisksunderphotonuclearproductionof67cuand99moisotopes
first_indexed 2025-07-02T18:19:47Z
last_indexed 2025-07-02T18:19:47Z
_version_ 1836560298801102848
fulltext ____________________________________________________________ PROBLEMS OF ATOMIC SCIENCE AND TECHNOLOGY. 2010. № 3. Series: Nuclear Physics Investigations (54), p.130-134. 130 ESTIMATION OF RADIATION RISKS UNDER PHOTONUCLEAR PRODUCTION OF 67Cu AND 99Mo ISOTOPES M.I. Ayzatskiy, A.N. Dovbnya, A.Eh. Tenishev, A.V. Torgovkin, V.L. Uvarov, V.A. Shevchenko, B.I. Shramenko, D. Ehst1 National Science Center “Kharkov Institute of Physics and Technology”, Kharkov, Ukraine; 1Argonne National Laboratory, USA E-mail: bshram@kipt.kharkov.ua The activated bremsstrahlung converter and isotopic target are the main sources of radiation hazard in the iso- tope production at electron accelerators. In experiments at the NSC KIPT accelerators KUT-30 and LU-40m, in- tended to produce 99Mo and 67Cu isotopes in the targets based on natural Mo and Zn, the output devices were ex- posed to radiation. Induced activities of the tantalum converter, of targets and cooling water were measured. The exposure dose rates provided by each element and the activity decrease after the exposure were determined. PACS: 06.60.Mr, 07.85.-m, 07.88+y, 81.30.Hd, 81.70.Jb 1. INTRODUCTION The 99Mo and 67Cu isotopes range among the most demandable in nuclear medicine. Thus, the world produc- tion of 99Mo, which is the generator of the basic diagnos- tic radionuclide 99mTc, currently exceeds 300 000 Ci per annum and is practically all-based on 235U fission in nu- clear reactors [1]. This method provides the high-yield production of 99Mo and a high specific activity (up to 104 Ci/g), but leads to a great amount of radioactive waste [2]. The technology using the radiative capture reaction 98Mo(n,γ)99Mo appears to be safer [3]. However, in this case the yield and specific activity of the target turn out to be a few orders of magnitude lower, and be- sides, the method also calls for the use of a nuclear reac- tor. Taking into account the ecological effects of reactor technologies as well as the problem of fissile material nonproliferation, it becomes currently central to create alternative methods of 99Mo production, one of them be- ing the photonuclear method [4]. In turn, the 67Cu isotope is considered as a most prom- ising beta-emitter for radioimmunotherapy [5]. At present it is mainly produced at high-current proton accelerators through the use of the 68Zn(p,2p)67Cu reaction. The reali- zation of the process also involves the production of a considerable quantity of “hot” impurities [6]. As preliminary studies have shown, the production of the mentioned radionuclides by the 100Mo(γ,n)99Mo and 68Zn(γ,p)67Cu reactions can provide the yield of desired isotopes, which is comparable with that pro- vided by other technologies, but with a substantially less quantity of radioactive waste produced [7, 8]. In this case, the high-current electron accelerator is an essen- tially more reliable, safe and inexpensive device than the nuclear reactor or the heavy-particle accelerator with the same beam energy and intensity. Here we analyze the main sources of radiation haz- ards and estimate their level at different stages of pho- tonuclear production of 99Mo and 67Cu isotopes. 2. RADIATION SOURCES AT PHOTONUCLEAR PRODUCTION OF ISOTOPES The basis for the technology under consideration is the activation of the isotopic target by means of high- energy bremsstrahlung resulting from accelerated elec- tron beam conversion. The process can be realized di- rectly in the target itself or in a separate device– converter placed between the exit window of the accel- erator and the target. The last variant is more preferable, because it provides a high specific activity of the target, and also makes it possible to reduce the radiation power absorbed in the target [9]. The converter generally corresponds to one or sev- eral plates, which are made from the material having a high atomic number (e.g., Ta, W or Pb) and are cooled with a flowing water [10]. So, in the general case, the output devices of the electron accelerator operated in the mode of isotope production include the exit window with tandem converter and target units behind it. The exit window of the high-current electron accel- erator usually consists of two thin foils (Al or Ti), be- tween which water is circulated. The contribution of this unit to the radiation hazard can be neglected in the esti- mation. On interaction of accelerated electrons with the con- verter, owing to (γ,n) reactions, apart from bremsstrah- lung, a quasi-isotropic photoneutron flux is generated. For example, the main reactions that occur in the W converter are 182W(γ,n)181W and 186W(γ,n)185W, in the Ta converter this is the reaction 181Ta(γ,n)180Ta, etc. In other words, in the process of target activation the con- verter unit is the source of mixed high-intensity γ,n- radiation [11]. On completion of the activation, the ra- diation hazard is mainly contributed by the residual ac- tivity of the converter and the target. In this case, their dose rates and the activity decrease are determined by the activation mode and the element composition of the devices. 3. DOSE CHARACTERISTICS OF RESIDUAL ACTIVITY OF OUTPUT 67Cu-PRODUCTION DEVICES 3.1. EXPERIMENTAL CONDITIONS For experimental estimation of the radiation back- ground at photonuclear production of the 67Cu isotope, a target device shown in Fig.1 has been used. It includes a stainless steel casing with a thin entrance window. In- side the casing, there is a four-plate Ta converter, each plate being 1 mm thick. In the process of irradiation the mailto:bshram@kipt.kharkov.ua converter is cooled by water (the total thickness of wa- ter spacings is 5 mm). Behind the converter, there is a Ti capsule, ~ 52.3 g in weight, which accommodates the isotopic target. The capsule is sealed with a stainless steel cap, ~ 10.5 g in weight. Directly in front of the converter and immediately behind it there were placed two sets of Ø40mm foils (Mo, Ni, Sn) to measure the electron beam profile (Mo1, Ni1, Sn1) and the bremsstrahlung profile (Mo2, Ni2, Sn2) by the photonu- clear converter technique [12]. e- Mo1 Ni1 Sn1 Mo2 Ni2 Sn2 Ta Znwater water plug,ss capsule,Ti Fig.1. Target device design To determine the contribution to the radiation back- ground from each target element (Zn, Ti, stainless steel), the following technique was used. Two similar Ti capsules were taken. The first capsule housed 18 Zn discs (Ø=20 mm, h=1 mm), and also 3 molybdenum foils (Ø=20 mm, δ=0.1 mm) at the beginning of the as- sembly (Mo-1), in its middle (Mo-10) and at the end (Mo-18). This approach enables one to determine the “utilization factor” of bremsstrahlung that is in contact with the Mo foil and Zn disc having the number i ac- cording to the activity ratio AMo-i/AMo2 (see Fig.1). In the second capsule, an Al cylinder (Ø=20 mm, h=19 mm) was put instead of zinc. Under the same ex- posure conditions of each capsule, this permitted us to estimate the zinc contribution to the residual activity of both the target and the casing for two variants (Ti or Al) of target casing fabrication. The targets were activated at the accelerator LU-40m operated in the 56 MeV, 5 μA mode. Each capsule was irradiated for 1 hour. 3.2. MEASUREMENTS AND RESULTS Thirty minutes after the end of irradiation of the first capsule (with zinc) the exposure dose rate (EDR) of the residual activity of the target device was measured. At a distance of 0.5 m the EDR was measured to be 200 mR/h, while the EDR of the capsule with zinc, taken out of the target device, was found to be 189 mR/h at the same distance. Thus, the capsule with zinc appears the main dose contributor of the target de- vice. In the following 7 days the EDRL of the capsule with zinc was measured at distances of L cm that provided the correspondence of the measured dose rate to the operative range of the dosimeter-radiometer. The meas- ured values were reduced to the standard distance L=10 cm by the formula: EDR10 = EDRL(L/10)2 , and were also normalized to the average beam current value of 1 μA and the exposure time of one hour (Fig.2). After irradiation of the second capsule at the same con- ditions, it was extracted from the target device and dis- assembled into components (Ti casing, cap and Al cyl- inder). Then, with the use of the same technique, dose rate measurements were performed for each component (Fig.3). The comparison between the data in Figs.2 and 3 shows that immediately after EOB the capsule with zinc mainly contributes to the EDR of the target device. 0,01 0,1 1 10 0,1 1 10 100 1000 ED R 10 m R /h /(m kA *h ) Time after irradiation, day Fig.2. Exposure dose rate (EDR10) of the capsule with zinc versus time after EOB (day) 0,01 0,1 1 1E-3 0,01 0,1 1 10 100 Ti StSteel AlED R 10 m R /h /(m kA *h ) Time after irradiation, day Fig.3. Exposure dose rates (EDR10) of capsule components versus time after EOB (day) In this case, the radiation background within the first 2-3 hours after the irradiation is determined by compara- tively short-lived isotopes Zn-63 and Zn-62 having the half-lives of 38 min and 9.3 hour, respectively. During the first day the main activity of the target is created by Zn-69m and Cu-67 isotopes; then in the following ~ 7 days, it is Cu-67 and Zn-65 that present the main dose- producing factor, and later - only Zn-65 (T1/2=243 days). The EDR is contributed by Sc-46, Sc-47 and Sc-48 isotopes (for the Ti capsule), Ni-56, Ni-57, Co-57 and Co-58 isotopes (for the stainless steel cap), and by iso- topes produced on the impurities (Si, Mg, etc.) for the Al target. If within 2 or 3 hours after irradiation the EDR of the Zn-filled capsule is more than order of magnitude higher than the total EDR of other capsule elements, then in a day of “cooling”, their EDR values appear comparable. 131 The present data enable one to choose the optimum regime of irradiated target handling, and also to predict dose characteristics of a similar target device activated at other conditions. D.Ehst has independently calculated the EDR10 variations after irradiation of a similar Zn- containing capsule and its separate components for elec- tron energy of 55 MeV and compared the results with the experimental data (see Figs.2 and 3) reduced to a beam current of 31.8 μA (this corresponding to the RPI (USA) accelerator conditions) and 1 hour of exposure. The obtained results are presented in Fig.4. 1 10 100 1000 10000 0.01 0.1 1 10 100 Time after irradiation (d) Ex po su re (m R /h ) Fig.4. Calculated EDR10 versus time after EOB (in days) under RPI conditions: a – Zn-containing capsule, b – capsule components (Ti+cap). ∆ – experiment (see Figs.2, 3); □, ◊ – calculation of D. Ehst (□ – upper limit of estimates, ◊ – lower limit of estimates) As it follows from Fig.4, the measured and calcu- lated EDR10 of the activated Zn-containing capsule and its components are in fair agreement. 4. MEASUREMENT OF DOSE CHARACTERISTICS OF 99Mo PRODUCTION DEVICES 4.1. TARGET COMPOSITIONS AND IRRADIATION CONDITIONS To measure the radiation background of photonu- clear 99Mo production devices, two Mo targets of natu- ral composition, each weighing 65.07 g, were used. The target was an assembly of 10 discs, each being ~ 2 mm in thickness and 19 mm in diameter. The target was placed directly behind the converter consisting of four interspaced 1-mm thick tantalum plates. During irradia- tion the converter and the target were cooled with water at a flow rate of 10 l/min. Molybdenum foils-witnesses of diameter 19 mm were inserted between the Mo discs in the target (Mo-19(1)…Mo-19(10)). In front of the target, there were placed Ø40 mm Mo and Sn foils- witnesses. They were used to determine the bremsstrahlung beam profile (see Fig.2). In addition, measurements of activities AMo-19(1)…AMo-19(10) enable one to determine the bremsstrahlung intensity variation in depth of the target. The two targets were irradiated in the accelerator KUT-30 at operating conditions of (36 MeV, 260 μA), one target for 10 min. and the other − for 60 min. 4.2. DOSE CHARACTERISTICS OF RESIDUAL TARGET-DEVICE ACTIVITIES After 10 minutes after turn-off of the accelerator op- erated for 10 minutes, the dose rate at the distance L=1m from the target device was measured to be 6800 μSv/h (≈680 mR/h), that on the standard distance L=10 cm basis being 68 R/h. This EDR is formed by the residual activities of the converter, the target and the remaining equipment. After irradiation, the two Mo targets were extracted from the target device for do- simetric measurements. Thus, in 10 min after irradia- tion, the EDR10 of the first target was 32.2 R/h, and in a day it decreased by a factor of 370. In the following period of 1 to 8.8 days the two targets showed a similar fall-off in the EDR due to the decay of Mo-99 isotope. Fig.5 shows the EDR10 of the second target as a function of time after irradiation. High EDR levels of Mo targets of natural composi- tion at the first hours after irradiation are due to 97 Nb isotope (T1/2=72 min). A further EDR decrease is de- termined by the decay of the desired isotope 99Mo (T1/2=66 hours). Fig.6 shows the EDR versus time after EOB for the Ta converter. The dose rate is mainly determined by the isotopes 180Ta (T1/2=8.12 h) and 182Ta (T1/2=115 days). Fig.5. Target-device dose rate versus time after irradiation (day) Fig.6. Ta-converter dose rate versus time after irradiation (day) The converter activity in 4.5 days after irradiation and on was mainly due to 182Ta resulting from the radia- tive capture reaction 181Ta(n,γ)182Ta. In particular, in 9 days after 10-hour exposure of the Ta converter to the beam having an average current of 240 μA at an elec- tron energy of 36 MeV the EDR at distance of 0.5 m made up 5.4 mR/h. With long exposure of the Ta con- verter the EDR value will increase practically linearly with time. This fact limits the use of Ta as a converter material in photonuclear production of isotopes. In realization of the present technology for different periods of target activation it is of interest to make a forecast of the ratio of the desired isotope activity to the EDR provided by the target device. The knowledge of generated partial activities of desired (67Cu or 99Mo) and accompanying (62Zn, 63Zn, 69mZn or 97Nb) isotopes makes it possible to calculate the target EDR for any activation period. Thus Table 1 lists the measured spe- cific activities A of the 67 Cu and 99Mo isotopes (reduced to the irradiation termination), the corresponding EDR values of natural Mo and Zn targets (normalized to 1 g of target weight), and also, the predicted values of the parameters after 24 and 48 hours of irradiation, respec- tively. It can be seen that the A/EDR ratio substantially increases with increasing time of exposure. 132 133 Table 2 gives the predicted activities of 67Cu and 99Mo isotopes, reduced to the termination of irradiation in the (36 MeV, 100 μA) mode, and also, the corre- sponding EDR values for enriched 68Zn (100%) and 100Mo (100%) targets, 40 and 60 g in weight, respec- tively, at different time of exposure. Table 1 Reduced yields of 67Cu 99Mo, target EDRs Time of ex- posure, hours A - desired- isotope specific activity, μCi/g·100μA·h Target EDR10, mR/h·g A/EDR10 of the target, μCi/ g·100μA·h/m R/h·g 67Cu 1 68 6,50 10,4 24 1500 83,53 17,9 48 2530 110,79 22,8 99Mo 1 271 51,37 5,27 24 5810 212,87 27,3 48 10320 295,1 34,9 Table 2 Activity and EDR10 of enriched targets Time of exposure, hours Desired isotope activity, Ci Target EDR10, R/h 67Cu 1 0,0144 0,08 24 0,318 1,77 48 0,538 2,98 99Mo 1 0,169 3,08 24 3,63 65,88 48 6,45 117,02 5. COOLING WATER ACTIVATION To estimate the activity of water that cools the target device, its 100 ml aliquot was taken 30 min after the irradiation of Mo was completed. The gamma-spectrometry analysis has indicated the presence of 24Na and 99Mo isotopes in the water. This can be attributed to their leaching from structural ele- ments, and also to activation of water impurities. The isotope 15O was not detected, because by the measure- ment time it had fully decayed. CONCLUSIONS 1. The undertaken experiments have indicated the main background radiation sources of target devices for 67Cu and 99Mo/99mTc isotope production. The measured EDRs are given in universal units (mR/h/(μA·h) and are reduced to the standard distance from the radiation source. This enables one to predict the radiation envi- ronment in the neighborhood of the target device at dif- ferent modes of its irradiation. The comparison between our experimental data and the calculations by D. Ehst (USA) for the RPI accelerator conditions shows their good agreement. 2. As regards the ratio of the desired isotope (67Cu and 99Mo) activity to the EDR of natural-composition targets, the modes of exposure for much more than 1h are preferred, because in this case the activities of more short-lived impurity isotopes (62Zn, 63Zn and 97Nb) get saturated. 3. The use of enriched 68Zn- and 100Mo-based targets not only increases the yield of the desired isotopes 67Cu and 99Mo/99mTc, but also substantially reduces the EDR of the targets just after EOB. 4. Of the structural materials considered, the radia- tion background criterion points to Al (without Fe and Mn impurities) as most preferable. At the same time, the exposure of Al in contact with water may be accompa- nied by the formation of a great amount of Al2O3. ACKNOWLEDGEMENTS The authors express gratitude to G.D. Pugachev and A.V. Mazilov for their valuable advices. The work has been done partially due STCU grant #P228. REFERENCES 1. Isotopes for Medicine and Life Sciences / Editors S.G. Adelstein and F.G. Wanning. Washington, D.C., Nat. Acad. Press, 1995, p.1,4,36,40. 2. W.Z. Villiers. The Management of Radioactive Waste from Fission Mo-99 Production // Int. Top. Meet. Nucl. and Hazardous Waste Management. At- lanta, USA, Aug. 1994. 3. A.V. Yegorov, M.P. Zykov, G.V. Korpusov, et al. Production of 99mTc on the Centralized Generator in St. Petersburg // J. Nucl. Biol. Med. 1994, v.38, №3, p.399-402. 4. N.P. Dikiy, A.N. Dovbnya, V.L. Uvarov. The Fun- damentals of 99mTc Production Cycle at Electron Accelerator // Problems of Atomic Science & Tech- nology. Series «Nuclear Physics Investigations». 2004, №1 (42), p.168-171. 5. R. Schwarzbach, et al. Development of a Simple and Selective Separation of 67Сu from Irradiated Zinc for Use in Antibody Labelling: A Comparison of Meth- ods // Int. J. Appl. Radiat. Isot. 1995, v.46, №5, p.329-336. 6. L.F. Mausner, et al. Radionuclide Development at BNL for Nuclear Therapy // Appl. Radiat. Isot. 1998, v.49, №4, p.285-294. 7. N.P. Dikiy, Yu.V. Lyashko, V.L.Uvarov, et al. Eco- logical Aspects of 99Mo/99mTc Production at an Elec- tron Accelerator // Problems of Atomic Science & Technology. Series «Nuclear Physics Investiga- tions». 2004, №1 (42), p.191-193. 8. V. Uvarov, M. Aizatskiy, N. Dikiy, et al. Compari- son of Cu-67 Production at Cyclotron and Electron Accelerator // Conf.on Cyclotron and their Applica- tions (Cyclotron 2007, Giardini Naxos, Italy). 2007, p.224-226. 9. N.I. Aizatsky, V.I. Nikiforov, A.V. Torgovkin, et al. Comparative analysis of photonuclear generation of isotopes in the circuits with and without the bremsstrahlung converter // Problems of Atomic Sci- ence & Technology. Series «Nuclear Physics Inves- tigations». 2008, №3 (49), p.174-178. 10. V.I. Nikiforov, V.F. Zhiglo, V.L. Uvarov. Thermo- physical analysis of high-power bremsstrahlung converters // Problems of Atomic Science & Tech- 134 nology. Series «Nuclear Physics Investigations». 2008, №1 (47), p.155-159. 11. T.V. Malykhina, A.A. Torgovkin, A.V. Torgovkin, et al. Investigation of mixed X,n-radiation field at photonuclear isotope production // Problems of Atomic Science & Technology. Series «Nuclear Physics Investigations». 2008, №1 (47), p.184-188. 12. V.I. Nikiforov, R.I. Pomatsalyuk, V.L. Uvarov, et al. A system for measuring the high-energy bremsstrah- lung beam profile // Problems of Atomic Science & Technology. Series «Nuclear Physics Investiga- tions». 2008, №3 (49), p.196-200. Статья поступила в редакцию 07.09.2009 г. ОЦЕНКА РАДИАЦИОННЫХ РИСКОВ ПРИ ФОТОЯДЕРНОМ ПРОИЗВОДСТВЕ ИЗОТОПОВ 67Сu И 99Мо Н.И. Айзацкий, А.Н. Довбня, А.Э. Тенишев, А.В. Торговкин, В.Л. Уваров, В.А. Шевченко, Б.И. Шраменко, D. Ehst Основными источниками радиационной опасности при производстве изотопов на ускорителе электронов являются активированные конвертер тормозного излучения и изотопная мишень. На ускорителях КУТ-30 и ЛУ-40М ННЦ ХФТИ проведено облучение экспериментальных выходных устройств для получения изото- пов 99Мо и 67Сu в мишенях на основе природных Мо и Zn. Исследована наведенная активность конвертера из тантала, мишеней и охлаждающей воды. Определена мощность экспозиционной дозы, создаваемая каж- дым элементом, а также скорость ее снижения после облучения. ОЦІНКА РАДІАЦІЙНИХ РИЗИКІВ ПРИ ФОТОЯДЕРНОМУ ВИРОБНИЦТВІ ІЗОТОПІВ 67Сu І 99Мо М.І. Айзацький, А.М. Довбня, А.Е. Тєнішев, О.В. Торговкін, В.Л. Уваров, В.А. Шевченко, Б.І. Шраменко, D. Ehst Основними джерелами радіаційної небезпеки при виробництві ізотопів на прискорювачі електронів є ак- тивовані конвертер гальмівного випромінювання та ізотопна мішень. На прискорювачах КУТ-30 і ЛУ-40M ННЦ ХФТІ проведено опромінювання експериментальних вихідних пристроїв для отримання ізотопів 99Мо і 67Сu в мішенях на основі природних Мо і Zn. Досліджена наведена активність конвертера з танталу, мішеней і води, що охолоджує. Визначена потужність експозиційної дози, що створюється кожним елементом, а та- кож швидкість її зниження після опромінення.