Экстремальные задачи теории емкостей конденсаторов в локально компактных пространствах. III
Завершено побудову теорії внутрішніх ємностей конденсаторів у локально компактному просторі, розпочату у перших двох частинах роботи. Конденсатор трактується як впорядкована скінченна сукупність множин, кожній з' яких приписано знак + або - , причому замикання різнознакових множин попарно диз...
Gespeichert in:
Datum: | 2001 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | Russian |
Veröffentlicht: |
Інститут математики НАН України
2001
|
Schriftenreihe: | Український математичний журнал |
Schlagworte: | |
Online Zugang: | http://dspace.nbuv.gov.ua/handle/123456789/172253 |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Zitieren: | Экстремальные задачи теории емкостей конденсаторов в локально компактных пространствах. III / Н.В. Зорий // Український математичний журнал. — 2001. — Т. 53, № 6. — С. 758-782. — Бібліогр.: 17 назв. — рос. |
Institution
Digital Library of Periodicals of National Academy of Sciences of UkraineZusammenfassung: | Завершено побудову теорії внутрішніх ємностей конденсаторів у локально компактному просторі, розпочату у перших двох частинах роботи. Конденсатор трактується як впорядкована скінченна сукупність множин, кожній з' яких приписано знак + або - , причому замикання різнознакових множин попарно диз'юнктні. Побудована теорія є змістовною для довільних (не обов'язково компактних чи замкнених) конденсаторів. Отримано достатні та (або) необхідні умови розв'язності основної мінімум-проблеми теорії ємностей конденсаторів, що при досить загальних припущеннях утворюють критерій. Знайдено постановки та розв'язано екстремальні задачі, які є дуальними до основної мінімум-проблеми, але на відміну,від останньої, завжди розв'язні (навіть у випадку незамкненого конденсатора). У всіх згаданих екстремальних задачах отримано опис потенціалів мінімальних мір та досліджено властивості екстремалей. Як допоміжний результат розв'язано відому задачу про Існування міри конденсатора. Побудована теорія.містить у собі як частинні випадки основні результати теорії ємкостей конденсаторів у Rⁿ , n ≥ 2, відносно класичних ядер. |
---|