Критерії оборотності елементів в асоціатах
Продовжується вивчення оборотних елементів в асоціатах, тобто в (n+1)-арних групоїдах, які є (і,j)-асоціативними для всіх і=j(mods), де s— дільник числа n. При s=1 довільний асоціат є напівгрупою. Встановлено два нових критерії оборотності елементів, чим узагальнено раніше одержані результати, навед...
Gespeichert in:
Datum: | 2001 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | Ukrainian |
Veröffentlicht: |
Інститут математики НАН України
2001
|
Schriftenreihe: | Український математичний журнал |
Schlagworte: | |
Online Zugang: | http://dspace.nbuv.gov.ua/handle/123456789/172413 |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Zitieren: | Критерії оборотності елементів в асоціатах / О.В. Юревич // Український математичний журнал. — 2001. — Т. 53, № 11. — С. 1556-1563. — Бібліогр.: 10 назв. — укр. |
Institution
Digital Library of Periodicals of National Academy of Sciences of UkraineZusammenfassung: | Продовжується вивчення оборотних елементів в асоціатах, тобто в (n+1)-арних групоїдах, які є (і,j)-асоціативними для всіх і=j(mods), де s— дільник числа n. При s=1 довільний асоціат є напівгрупою. Встановлено два нових критерії оборотності елементів, чим узагальнено раніше одержані результати, наведено наслідки для (n+1)-груп і поліагруп, тобто квазігрупових асоціатів. |
---|