Non-Monotonous Mechanical Behavior at the Nanoscale: Elastic and Plastic Properties
Немонотонный характер прочности, объема активации и параметра чувствительности материала к давлению в случае достижения наномасштабных размеров зерна интерпретируется на основании “правила смеси”, которое обычно используется для композитов. Внутренние участки зерна и его граница рассматриваются как...
Gespeichert in:
Datum: | 2015 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | English |
Veröffentlicht: |
Інститут проблем міцності ім. Г.С. Писаренко НАН України
2015
|
Schriftenreihe: | Проблемы прочности |
Schlagworte: | |
Online Zugang: | http://dspace.nbuv.gov.ua/handle/123456789/173373 |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Zitieren: | Non-Monotonous Mechanical Behavior at the Nanoscale: Elastic and Plastic Properties / X. Zhang, E.C. Aifantis // Проблемы прочности. — 2015. — № 4. — С. 157-167. — Бібліогр.: 23 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-173373 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1733732020-12-02T01:27:02Z Non-Monotonous Mechanical Behavior at the Nanoscale: Elastic and Plastic Properties Zhang, X. Aifantis, E.C. Научно-технический раздел Немонотонный характер прочности, объема активации и параметра чувствительности материала к давлению в случае достижения наномасштабных размеров зерна интерпретируется на основании “правила смеси”, которое обычно используется для композитов. Внутренние участки зерна и его граница рассматриваются как две независимыt “фазы” с различными механическими свойствами. Модификация простого правила смеси путем включения в него концепций континуальной теории смесей позволяет сгенерировать лапласиан деформации в локальном уравнении состояния для каждой фазы. При постулировании простой одномерной конфигурации нанополикристалла решается соответствующая краевая задача, что позволяет интерпретировать зависимость общего модуля упругости от размера зерна. Немонотонний характер міцності, об’єму активації і параметра чутливості матеріалу до тиску у випадку досягнення наномасштабних розмірів зерна інтерпретується на основі “правила суміші”, яке зазвичай використовується для композитів. Внутрішні ділянки зерна та його границя розглядаються як дві незалежні “фази” з різними механічними властивостями. Модифікація простого правила суміші шляхом включення у нього концепцій континуальної теорії сумішей дозволяє генерувати лапласіан деформації в локальному рівнянні для кожної фази. При постулюванні простої одновимірної конфігурації нанополікристала розв’язується відповідна крайова задача, що дозволяє інтерпретувати залежність загального модуля пружності від розміру зерна. 2015 Article Non-Monotonous Mechanical Behavior at the Nanoscale: Elastic and Plastic Properties / X. Zhang, E.C. Aifantis // Проблемы прочности. — 2015. — № 4. — С. 157-167. — Бібліогр.: 23 назв. — англ. 0556-171X http://dspace.nbuv.gov.ua/handle/123456789/173373 539.4 en Проблемы прочности Інститут проблем міцності ім. Г.С. Писаренко НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
topic |
Научно-технический раздел Научно-технический раздел |
spellingShingle |
Научно-технический раздел Научно-технический раздел Zhang, X. Aifantis, E.C. Non-Monotonous Mechanical Behavior at the Nanoscale: Elastic and Plastic Properties Проблемы прочности |
description |
Немонотонный характер прочности, объема активации и параметра чувствительности материала к давлению в случае достижения наномасштабных размеров зерна интерпретируется на основании “правила смеси”, которое обычно используется для композитов. Внутренние участки зерна и его граница рассматриваются как две независимыt “фазы” с различными механическими свойствами. Модификация простого правила смеси путем включения в него концепций континуальной теории смесей позволяет сгенерировать лапласиан деформации в локальном уравнении состояния для каждой фазы. При постулировании простой одномерной конфигурации нанополикристалла решается соответствующая краевая задача, что позволяет интерпретировать зависимость общего модуля упругости от размера зерна. |
format |
Article |
author |
Zhang, X. Aifantis, E.C. |
author_facet |
Zhang, X. Aifantis, E.C. |
author_sort |
Zhang, X. |
title |
Non-Monotonous Mechanical Behavior at the Nanoscale: Elastic and Plastic Properties |
title_short |
Non-Monotonous Mechanical Behavior at the Nanoscale: Elastic and Plastic Properties |
title_full |
Non-Monotonous Mechanical Behavior at the Nanoscale: Elastic and Plastic Properties |
title_fullStr |
Non-Monotonous Mechanical Behavior at the Nanoscale: Elastic and Plastic Properties |
title_full_unstemmed |
Non-Monotonous Mechanical Behavior at the Nanoscale: Elastic and Plastic Properties |
title_sort |
non-monotonous mechanical behavior at the nanoscale: elastic and plastic properties |
publisher |
Інститут проблем міцності ім. Г.С. Писаренко НАН України |
publishDate |
2015 |
topic_facet |
Научно-технический раздел |
url |
http://dspace.nbuv.gov.ua/handle/123456789/173373 |
citation_txt |
Non-Monotonous Mechanical Behavior at the Nanoscale: Elastic and Plastic Properties / X. Zhang, E.C. Aifantis // Проблемы прочности. — 2015. — № 4. — С. 157-167. — Бібліогр.: 23 назв. — англ. |
series |
Проблемы прочности |
work_keys_str_mv |
AT zhangx nonmonotonousmechanicalbehavioratthenanoscaleelasticandplasticproperties AT aifantisec nonmonotonousmechanicalbehavioratthenanoscaleelasticandplasticproperties |
first_indexed |
2025-07-15T10:02:11Z |
last_indexed |
2025-07-15T10:02:11Z |
_version_ |
1837706754271477760 |
fulltext |
UDC 539.4
Non-Monotonous Mechanical Behavior at the Nanoscale: Elastic and Plastic
Properties
X. Zhang
a
and E. C. Aifantis
a,b,c,1
a School of Mechanics and Engineering, Southwest Jiaotong University, Key Laboratory of Advanced
Technologies of Materials, Ministry of Education of China, Chengdu, China
b International Lab for Modern Functional Materials, ITMO University, St. Petersburg, Russia
c Lab of Mechanics and Materials, Aristotle University, Thessaloniki, Greece
1 mom@mom.gen.auth.gr)
ÓÄÊ 539.4
Íåìîíîòîííîå ìåõàíè÷åñêîå ïîâåäåíèå ìàòåðèàëîâ íà íàíîóðîâíå:
óïðóãèå è ïëàñòè÷åñêèå ñâîéñòâà
Êñ. Æàíã
à
, Å. Ñ. Àèôàíòèñ
à,á,â
à Îòäåëåíèå ìåõàíèêè è èíæèíèðèíãà, Þãî-Çàïàäíûé òðàíñïîðòíûé óíèâåðñèòåò, Ëàáîðàòîðèÿ
ïåðåäîâûõ òåõíîëîãèé ìàòåðèàëîâ, ×ýíäó, Êèòàé
á Ìåæäóíàðîäíàÿ ëàáîðàòîðèÿ ñîâðåìåííûõ ôóíêöèîíàëüíûõ ìàòåðèàëîâ, Óíèâåðñèòåò ÈÒÌÎ,
Ñàíêò-Ïåòåðáóðã, Ðîññèÿ
â Ëàáîðàòîðèÿ ìåõàíèêè è ìàòåðèàëîâ, Óíèâåðñèòåò èì. Àðèñòîòåëÿ, Ñàëîíèêè, Ãðåöèÿ
Íåìîíîòîííûé õàðàêòåð ïðî÷íîñòè, îáúåìà àêòèâàöèè è ïàðàìåòðà ÷óâñòâèòåëüíîñòè
ìàòåðèàëà ê äàâëåíèþ â ñëó÷àå äîñòèæåíèÿ íàíîìàñøòàáíûõ ðàçìåðîâ çåðíà èíòåðïðå-
òèðóåòñÿ íà îñíîâàíèè “ïðàâèëà ñìåñè”, êîòîðîå îáû÷íî èñïîëüçóåòñÿ äëÿ êîìïîçèòîâ.
Âíóòðåííèå ó÷àñòêè çåðíà è åãî ãðàíèöà ðàññìàòðèâàþòñÿ êàê äâå íåçàâèñèìût “ôàçû” ñ
ðàçëè÷íûìè ìåõàíè÷åñêèìè ñâîéñòâàìè. Ìîäèôèêàöèÿ ïðîñòîãî ïðàâèëà ñìåñè ïóòåì âêëþ÷å-
íèÿ â íåãî êîíöåïöèé êîíòèíóàëüíîé òåîðèè ñìåñåé ïîçâîëÿåò ñãåíåðèðîâàòü ëàïëàñèàí
äåôîðìàöèè â ëîêàëüíîì óðàâíåíèè ñîñòîÿíèÿ äëÿ êàæäîé ôàçû. Ïðè ïîñòóëèðîâàíèè ïðîñòîé
îäíîìåðíîé êîíôèãóðàöèè íàíîïîëèêðèñòàëëà ðåøàåòñÿ ñîîòâåòñòâóþùàÿ êðàåâàÿ çàäà÷à,
÷òî ïîçâîëÿåò èíòåðïðåòèðîâàòü çàâèñèìîñòü îáùåãî ìîäóëÿ óïðóãîñòè îò ðàçìåðà çåðíà.
Êëþ÷åâûå ñëîâà: íàíîìåõàíèêà, íàíîïîëèêðèñòàëëû, ãðàäèåíòíûå ìàñøòàáíûå
ýôôåêòû.
Introduction. When the mechanical behavior needs to be addressed at the micron and
nano scale level, conventional models at the macroscale need to be revised in order to
consider the new processes and material states that emerge. It is very well known, for
example, that the slope of the conventional Hall–Petch (HP) equation for the yield stress as
a linear function of the inverse square root of the grain size, changes from positive to
negative. On phenomenological grounds this may be viewed as a “phase transition” that
occurs at a characteristic grain size at the range of ~ 10–20 nm, where about 30% of the
atoms of a nanopolycrystal are situated in the grain boundary space. In that range, a
plasticity transition mechanism occurs, as dislocation motion is inhibited in the grain
interior and promoted, instead, in the grain boundaries. The classical HP behavior is
attributed to the fact that “equilibrium” grain boundaries in conventional polycrystals act as
obstacles to the dislocation motion, whereas the inverse HP behavior (IHP) may be
© X. ZHANG, E. C. AIFANTIS, 2015
ISSN 0556-171X. Ïðîáëåìû ïðî÷íîñòè, 2015, ¹ 4 157
attributed to the fact that “non-equilibrium” grain boundaries in nanopolycrystals act as
facilitators to the dislocation motion within the grain boundary space [1]. A simple “rule of
mixtures” relationship for the “bulk” and “grain boundary” space resulted [2–4] to a single
non-monotonous equation for the yield stress vs. grain size containing both a hardening and
a softening branch.
In Section 1 an analogous procedure is applied to interpret the non-monotonous
behavior for the activation volume and the pressure sensitivity parameters of nanophase
materials, in agreement with available experimental data.
As shown earlier (e.g., [1]), the “rule of mixtures” argument can be extended to the
“continuum theory of mixtures” where both the “grain interior” and the “grain boundary”
phases are assumed to behave as their macroscopic counterparts, but they interact with an
internal volume force proportional to the relative motion of the two phases. It then turns out
that the local stress-strain constitutive equation should be generalized to include the
Laplacian of the strain field. This gradient-dependent constitutive equation is used in
Section 2 to obtain the variation of the overall “effective” elastic modulus with grain size,
for a typical unit cell of a nanopolycrystal and the same can be done for the hardening
modulus.
1. Activation Volume and the Pressure Sensitivity Parameter.
1.1. Non-Monotonous Behavior of Activation Volume. In conventional polycrystals,
grain boundaries act as obstacles to the motion of dislocations, often leading to the
formation of piles-up in front of grain boundaries. As a result, the yield or flow stress
increased with the decrease of grain size refinement down to around 20 nm, according to
the famous HP equation [5]. However, with further reduction of grain size, the pile-up
mechanism breaks down and is replaced by other dislocation processes, leading to grain
boundary rotation and grain boundary migration [6, 7]. As a result, the material softens
under further deformation, and below a critical grain size, an IHP behavior is observed.
Such type of IHP behavior has been described through a “rule of mixtures” argument [2–4],
as well as through a strain gradient plasticity model [8–10].
Recent nanoindenation tests on Ni–W alloy [11] showed that there is a rate dependence
of the hardness, i.e., the hardness increases with the increase of the strain rate, following a
monotonic linear trend. The strain rate sensitivity is commonly describe through the rate
sensitivity index (m)
m
k T
V
k T
V H
B B� � �
� �
� � �
ln
ln �
,
* *
3 3 3
(1)
where � and �� denote flow stress and strain rate respectively, and the apparent activation
volume V * is another physical parameter introduced to characterize the rate-dependent
strength or hardness (H� 3� according to Taylor’s rule), with kB and T denoting
Boltzmann constant and temperature, respectively. If then follows that
V k T k T
H
B B
* ln � ln �
.� �3 3 3
� �
��
� �
�
(2)
Next, we assume that the strain rate is the same in both grain boundary and grain
interior phases, while the total stress is determined by the mixture rule in its classical Voigt
form, i.e.,
� � �� � �( ) .1 f fgb g (3)
In view of Eqs. (2) and (3), the following relationship for the total activation volume
V * may be written down, in term of the activation volumes of the grain interior (Vg
* ) and
the grain boundary phase (Vgb
* ):
X. Zhang and E. C. Aifantis
158 ISSN 0556-171X. Ïðîáëåìû ïðî÷íîñòè, 2015, ¹ 4
1 1
1
1
V
f
V
f
Vg gb
* * *
( ) ,� � � f
d
d
�
��
�
�
� 3
, (4)
where the expression for the volume fraction ( f) of the grain interior phase is easily
deduced on the basis of a simple geometric configuration for a nanopolycrystal of grain
size d and grain boundary thickness � [2, 3].
Previous physical arguments for the activation volume in coarse grain metals (based
on the intersection mechanism of forest dislocations), give a large for it in the range of
(100–1000)b3, whereas for grain boundary sliding or grain boundary diffusion (coble
creep), the activation volume is estimated as b3. For cross slip process, the activation
volume may vary between b3 and 100 3b . Grain refinement in nanocrystalline copper
(nc-Cu) results in a rate sensitivity index increase up to an order of magnitude (relative to
metals with grain size in the micrometer regime), along with a concomitant decrease in
activation volume by two orders of magnitude. The effect of grain size (d) for nc-Cu and
twin thickness (�) for nt-Cu on the activation volume indicate a decrease from 1000 3b to
about 10 3b when d (or �) decreases from the micrometer to the nanometer level. Similar
tends were observed in other nanocrystalline materials [11, 12], where an unusual rate
behavior, as manifested through the activation volume parameter, was also reported. These
experiments showed that the activation volume first decreased with the refinement of grain
size, then increased with decreasing grain size. There was a clear minimum in the activation
volume existing near a critical grain size of 10–20 nm. This is reminiscent to the strength
transition mentioned earlier from HP to IHP behavior [1–3].
To proceed further we assume as in [1–3] that the grain boundary phase behaves as
amorphous material with its activation volume being constant (Vgb
* � const), while the
activation volume for the grain interior follows a HP type equation; i.e., Vg
*� �1
� ��� �V k dg g
1 1 2/ , as has been observed [13, 14] for a wide range of metals with grain size
varying from the micron to submicron level. By incorporating the above arguments into
Eq. (4) we obtain the following relation for the activation volume of a nanopolycrystal
1 1
1
3
1 2
3
V
d
d V
k d
d
d
g
g*
/�
��
�
�
�
�
�
�
� �
��
�
�
�
�
�� �
�
�
1
Vgb
*
. (5)
This relation provides a good fit to the non-monotonous behavior of the activation
volume V * vs. the grain size d, as observed experimentally (Fig. 1). To this end, we take
V bg
��1000 3 , V bgb � 30 3, and �� 2 nm, while the value of the parameter kg is to be
0.31.
1.2. Non-Monotonous Behavior of Pressure Sensitivity. The pressure dependence of
yield or flow stress for amorphous and nanophase materials, was been discussed in [15,
16]. It was shown, in particular, that a Mohr–Coulomb criterion can be used to model the
anisotropic yielding behavior of nanopolycrystals in tension and compression, as well as
the different orientation of shear bands that occur during these different types of loading.
This was done by adjusting the value of the friction or pressure sensitivity parameter; i.e.,
the scalar parameter multiplying the hydrostatic pressure term which is introduced to the
usual von Mises stress to modify the yield condition of conventional metal plasticity. More
recently, a non-monotonous behavior of the pressure sensitivity parameter of friction
coefficient (�) was documented experimentally [11], and also established through molecular
dynamics simulation [17]. It will be shown below that the simple “mixture rule” argument
Non-Monotonous Mechanical Behavior at the Nanoscale ...
ISSN 0556-171X. Ïðîáëåìû ïðî÷íîñòè, 2015, ¹ 4 159
used above to model the non-monotonous behavior of the activation volume, can also be
utilized to model the aforementioned non-monotonous dependence of � on grain size. The
nanopolycrystal is viewed, as before, as a composite containing both “grain boundary” and
“grain interior” phases. The overall Mohr–Coulomb friction coefficient (�) can then be
expressed as
� � �� � �f fg gb( ) ,1 f
d
d
�
��
�
�
� 3
, (6)
where �g and �gb are the corresponding parameters for the grain interior and grain
boundary phases respectively. The volume fraction of the grain interior phase is expressed
as before in terms of the grain size (d) and the grain boundary thickness (�). The value of
�gb is taken as constant (�gb � 0.16), i.e., converges to that for amorphous metals when
the grain size is below 10 nm [11]. The value of �g is assumed to be determined by an HP
type relation of the form � �g g gk d� �� �1 2/ , where �g
� is the Mohr–Coulomb coefficient
for a coarse grain material, which is taken to be equal to 0.02. Then the overall
Mohr–Coulomb friction coefficient (�) for the nanopolycrystal considered herein, reads
�
�
�
�
��
��
�
�
� � �
��
�
�
�
�
�
� �d
d
k d
d
d
g g g
3
1 2
3
1( )/
b . (7)
By assuming the values of (� � �g gb
� , , ) as discussed above and assigning to kg the
value of 0.7 we can fit the experimental data of [11], as shown in Fig. 2.
2. Elastic Modulus. Nanoindentation tests [18] have demonstrated that the Young
modulus of nanocrystalline Fe – prepared by mechanical milling/alloying with variable
grain size (7, 14.6, 20.6, and 80 nm) obtained through annealing at different temperatures –
decreases with reduced grain size. This dependence of the Young modulus on grain size is
consistent with theoretical predictions [18], suggesting that the change in the Young (E) and
shear modulus (G) of nanocrystalline materials, free of porosity, with a grain size larger
than about 4 nm, should be very limited (�10%). It is likely that the reported large
decreases in the Young and shear moduli of nanocrystalline materials prepared by gas-
condensation/vacuum consolidation result from a relatively large volume fraction of pores.
160 ISSN 0556-171X. Ïðîáëåìû ïðî÷íîñòè, 2015, ¹ 4
X. Zhang and E. C. Aifantis
Fig. 1. The grain size–dependent activation volume (normalized by the cubed Burgers vector) of
nanocrystalline Ni–W alloys [11] fitted through Eq. (5).
Topologically, a nanopolycrystal may be viewed as consisting of three superimposed
components: grain interior, grain boundary and triple junctions. Thus, the overall elastic
modulus X (X denotes E or G) of a nanopolycrystal, may be estimated through the
mixture rule [18] as
X V X V X V Xc c gb gb tj tj� � � � � � , (8)
where X c , X gb , and X tj denote elastic modulus for the grain interior, the grain
boundary, and the triple junctions, respectively. The corresponding volume fractions
denoted here by Vc , Vgb , and Vtj , can be calculated based on a three-dimensional
tetrakaidecahedral representation [19] of the nanopolycrystal as
V
d
d
gb �
�3 2
3
� �( )
, V
d
d
c �
��
�
�
� 3
, V V Vtj gb c� � �1 . (9)
If the grain boundary thickness is assumed to be 0.5 nm, a good fit of Eq. (8) to the
experimental data is obtained [18]. The mixture model can further predict a decrease by
20% in E or G when the grain size reduced down to 1.5 nm [18].
When a nanopolycrystal is viewed as a mixture of interacting phases [1] made up by
grain interior and grain boundaries, the following local gradient constitutive equations
results
� � � �� � � � �k ci i( ) ,2
(10)
for each one of the phases (see Fig. 1 for a representative 1D configuration). The quantity
� is the shear strain, ki ( )� with i�1 2, denote the homogeneous hardening/softening
moduli, ci with i�1 2, denote the gradient coefficient, and �� is the applied shear stress
experienced by the representative unit cell shown in Fig. 3. If we assume linear elastic
behavior, i.e., the solution of Eq. (10) gives
�
�
g
g g gG
C
y
l
C
y
l
� �
�
�
�
�
�
��
�
�
�
�
�
�
�
1 2cosh sinh , �
�
gb
gb gb gbG
C
y
l
C
y
l
� �
�
�
�
�
�
��
�
�
�
�
�
�
�
3 4cosh sinh , (11)
ISSN 0556-171X. Ïðîáëåìû ïðî÷íîñòè, 2015, ¹ 4 161
Non-Monotonous Mechanical Behavior at the Nanoscale ...
Fig. 2. Comparison of the mixture rule in Eq. (7) to the experimentally measured grain size
dependence of Mohr–Coulomb friction coefficient or pressure sensitivity parameter.
where C C1 4, ... , are integration constants and l lg gb, are the internal length scales for
the grain interior and grain boundary, i.e.,
l
c
G
g
g
g
� , l
c
G
gb
gb
gb
� . (12)
The constants C C1 4, ... , are determined by the following matching (continuity at the
interface) and boundary conditions:
� � �
� �
�
�
�
�
g at
at
at
� �
� �
� �
�
gb
g gb
gb
g
y
d
dy
d
dy
y
d
dy
y
2
2
0 0
,
,
,
�
� �
�
�
�
�
�
�
�
�
�
� G
y d
g
at � 2.
(13)
Then, C C1 4, ... , are given by the following expressions:
C
l G G
l
d lg g gb
gb
g
1
2 2
�
�
�
�
�
�
�
� �
�
�
�
�
��
��( ) sinh sinh�
� �
��
�
�
�
�
�
�
�
�
�
�
�
��l G G
l
d
l
l G Ggb g gb
gb g
g g gbcosh cosh sinh
�
2
�
2l
d
lgb g
�
�
�
�
�
�
�
�
�
�
�
�sinh
, (14a)
C
l G G d l
l
g g gb g
gb
2
2 2
��
� �
�
�
�
�
��
�
��
�
�
��( ) cosh sinh�
� � �
�
�
�
�
�
�
�
�
�
�
�
�
�
��l G G
l
d
l
l G Ggb g gb
gb g
g g gbcosh cosh sin
�
2
h sinh
,
�
2l
d
lgb g
�
�
�
�
�
�
�
�
�
�
�
�
(14b)
162 ISSN 0556-171X. Ïðîáëåìû ïðî÷íîñòè, 2015, ¹ 4
X. Zhang and E. C. Aifantis
Fig. 3. The illustration of the boundary value problem for the unit cell configuration of a
nanopolycrystal under shear.
C
l G G
d
l l
l G
gb g gb
g gb
gb g
3 ��
�
�
�
�
�
�
�
�
�
�
�
�
��( ) cosh�
�
csch
2
G
d
l l
l G G
d
l
gb
g gb
g g gb
g
cosh coth sinh
�
�
�
�
�
�
�
�
�
�
�
��
�
�
�
��
2 �
�
, (14c)
C4 0� . (14d)
The average strain for the unit cell of Fig. 3 is calculated as
!�
�
�
�
�
�
" "
�
1
2
0
2
2
2
d
dy dygb g
d
�
� �
�
�
�/
/
/
. (15)
The first term gives
� �
�
�
�
gb
gb
gb gb g
gb g gb
gb
dy
G
l G G
l G G
l
0
2 2
2
2
/ ( )
coth
" � �
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
l G G
d
l
g g gb
g
tanh
, (16)
whereas the second term gives
� �g
g
g g gb
g g
dy
d
G
l G G
d
l
d
l
� �
�
�
�
�
�
�
2
2
2 2( )sinh cosh
�
�
�
�
�
�
�
�
l G G
d
l
l G G
l
g g gb
g
gb g gb
gb
tanh coth
�
2 �
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
"
�
�
/
/
.
2
2d
(17)
Thus, the overall or “effective” modulus (Geff ) for the representative macroscopic unit
cell can be calculated in a similar form as in [10] giving
G
f
G
f
G d
eff
gb
gb
g
g
g gb
� �
� �
�
�
�
�
�
�
�
�
��
�
!
# #
1
1
2
( )
, (18)
where f d dg � �( . )05� and f dgb � �05 05. ( . )� � are the fraction of the grain phase and
grain boundary phase, while #g and #gb are the gradient contribution to the effective
modulus, given by
#g
g g gb
g g
g
l G G
d
l
d
l
l G
�
�
�
�
�
�
�
�
2
2
2 2( )sinh cosh
g gb
g
gb g gb
gb
G
d
l
l G G
l
tanh coth
,
�
�
�
�
�
�
�
�
2
(19a)
ISSN 0556-171X. Ïðîáëåìû ïðî÷íîñòè, 2015, ¹ 4 163
Non-Monotonous Mechanical Behavior at the Nanoscale ...
#gb
gb gb g
g g gb
g
gb g gb
l G G
l G G
d
l
l G G
�
�
�
�
�
�
2 ( )
tanh coth
.
�
2lgb
�
�
�
(19b)
It is noted that the gradient contribution to the effective modulus disappears
( )# #g gb� � 0 when the modulus of the grain boundary phase is the same with the grain
interior phase (G Gg gb� ).
The above model can be used to capture the grain size dependence of the effective
elastic modulus for Fe. To this end, we assume ��1nm, G Ggb g� 075. as inferred from
atomistic simulations [20]; lg � 2 nm and lgb � 075. nm. The predicted normalized shear
modulus G Geff g as a function of the grain size, is depicted in Fig. 4a. From this figure, it
can be concluded that the elastic modulus may decrease up to 10%, when the grain size is
reduced to below 5 nm. Such drop is not as large as that reported earlier [21], where a
decrease of about 54% for nanocrystalline Pd with a grain size of 5 nm and of about 40%
for nanocrystalline Cu with a grain size of 25 nm, was reported. Such large reductions of
elastic moduli are supposed to result from the processing methods (gas-condensation/
vacuum consolidation) inducing a relatively large volume fraction of pores [18]. The
reduction effect of porosity on the elastic modulus was also confirmed through molecular
dynamics (MD) simulations [22]. It was shown, for example, that a 12.5% porosity gives a
reduction of 35–40% in the Young modulus.
The elastic moduli resulting from the MD simulations of [22] show that for
nanocrystalline Cu with grain sizes of 3.28, 4.13, 5.21, 6.56 and 13.2 nm, the corresponding
Young modulus is obtained as 60, 74, 75, 84, and 98 GPa. It should be noted that these MD
simulations underestimate the elastic modulus due to the fact that some plastic deformation
occurs (in an initial linear regime of 0.3% strain which cannot be avoided). These particular
MD results for nc-Cu can also be derived by adopting the above discussed strain gradient
model by properly adjusting the internal length parameters. The grain boundary thickness is
again assumed to be ��1nm, while the internal lengths for the grain interior and the grain
boundary phases are assumed to be lg �1 nm and lgb � 025. nm, respectively. By also
assuming that the elastic modulus for the grain boundary phase is about 25% of that for the
grain interior phase (i.e., G Ggb g � 027. ) we can obtain a good fit of the strain gradient
model to the simulation results, as shown in Fig. 4b. In this connection, it is noted from the
X. Zhang and E. C. Aifantis
164 ISSN 0556-171X. Ïðîáëåìû ïðî÷íîñòè, 2015, ¹ 4
a b
Fig. 4. Comparison of the strain gradient model predictions for the grain size dependence of elastic
modulus to the experimental data: (a) nanocrystalline Fe [18] and (b) nanocrystalline Cu [22].
above simulations, that when the grain size is approaching the internal length scale of the
grain interior (2 nm for nanocrystalline Fe, 1 nm for nanocrystalline Cu), there is a reverse
trend of the elastic modulus, which increases with further decrease of the grain size. In
order to illustrate this non-monotonous behavior, we keep the parameters, G Ggb g � 05. ,
��1 nm, lgb �1 nm as constants, while we vary the internal length scale for the grain
interior lg as 1, 5, 10, 20, 100, and 1000 nm. The resulting grain size dependence of the
elastic modulus is shown as the solid curves in Fig. 5. It is seen that the effective elastic
modulus first decreases with the decrease of grain size, then increases with the continued
decrease of grain size. Such non-monotonous behavior emerges when the internal length
scale for the grain interior is large, as compared to the grain size itself. Such inversed grain
size dependence for the elastic modulus has also been observed in cellular solids where the
internal length scale is of the order of the cell size [23]. Furthermore, if the internal length
scale for the grain boundary phase is changed to be lgb � 05. nm, the obtained results are
shown as the dashed curves in Fig. 5, i.e., we find that the effective elastic modulus is
reduced as compared to the case where lgb �1nm. This is to be expected since the elastic
modulus contribution from the strain gradient is reduced when lgb is reduced according to
Eq. (18).
Conclusions. By viewing a nanopolycrystal as a superposition of two interacting
phases (the grain interior and grain boundary phase), it is possible to derive size-dependent
expressions for elastic and plastic properties. First, a simple “rule of mixtures” argument is
employed to obtain the variation of strength, activation volume and pressure sensitivity
parameter on the grain size and the critical size where a transition from the conventional
Hall–Petch to and inverse Hall–Petch type behavior is determined. Then, a more elaborate
“theory of mixtures” leading to a strain gradient model employed and a typical boundary
value problem is solved for a unit cell involving a grain boundary of finite width
surrounded by two nanograins. This results to an analytical expression for the overall
“effective” elastic modulus which also depends on the grain size, but also as a function of
the internal length entering the strain gradient model. The theoretical predictions for all
aforementioned nanoscale material properties compare well with available experimental
data.
Non-Monotonous Mechanical Behavior at the Nanoscale ...
ISSN 0556-171X. Ïðîáëåìû ïðî÷íîñòè, 2015, ¹ 4 165
Fig. 5. Grain size dependence of the normalized effective elastic modulus for a nanopolycrystal
predicted through the strain gradient model by varying the internal length for the grain interior
(lg � 1, 5, 10, 20, 100, and 1000 nm) for fixed grain boundary internal length lgb �1 nm (solid
curves) and lgb � 0 5. nm (dashed curves).
Acknowledgments. Zhang is grateful for the support of NSFC (11202172), CPSF
(2013M530405), the Basic Application Research Plan of Sichuan Province (2015JY0239)
and the Sichuan Provincial Youth Science and Technology Innovation Team
(2013TD0004). The authors also acknowledge the support of Aristotle University through
the Aristeia-II and Hellenic ERC-13 grants of the General Secretariat for Research and
Technology (GSRT) of Greece.
Ð å ç þ ì å
Íåìîíîòîííèé õàðàêòåð ì³öíîñò³, îá’ºìó àêòèâàö³¿ ³ ïàðàìåòðà ÷óòëèâîñò³ ìàòåð³àëó
äî òèñêó ó âèïàäêó äîñÿãíåííÿ íàíîìàñøòàáíèõ ðîçì³ð³â çåðíà ³íòåðïðåòóºòüñÿ íà
îñíîâ³ “ïðàâèëà ñóì³ø³”, ÿêå çàçâè÷àé âèêîðèñòîâóºòüñÿ äëÿ êîìïîçèò³â. Âíóòð³øí³
ä³ëÿíêè çåðíà òà éîãî ãðàíèöÿ ðîçãëÿäàþòüñÿ ÿê äâ³ íåçàëåæí³ “ôàçè” ç ð³çíèìè ìåõà-
í³÷íèìè âëàñòèâîñòÿìè. Ìîäèô³êàö³ÿ ïðîñòîãî ïðàâèëà ñóì³ø³ øëÿõîì âêëþ÷åííÿ ó
íüîãî êîíöåïö³é êîíòèíóàëüíî¿ òåî𳿠ñóì³øåé äîçâîëÿº ãåíåðóâàòè ëàïëàñ³àí äåôîð-
ìàö³¿ â ëîêàëüíîìó ð³âíÿíí³ äëÿ êîæíî¿ ôàçè. Ïðè ïîñòóëþâàíí³ ïðîñòî¿ îäíî-
âèì³ðíî¿ êîíô³ãóðàö³¿ íàíîïîë³êðèñòàëà ðîçâ’ÿçóºòüñÿ â³äïîâ³äíà êðàéîâà çàäà÷à, ùî
äîçâîëÿº ³íòåðïðåòóâàòè çàëåæí³ñòü çàãàëüíîãî ìîäóëÿ ïðóæíîñò³ â³ä ðîçì³ðó çåðíà.
1. E. C. Aifantis, “Gradient nanomechanics: applications to deformation, fracture, and
diffusion in nanopolycrystals,” Metall. Mater. Trans. A, 42, No. 10, 2985–2998
(2011).
2. J. E. Carsley, J. Ning, W. W. Milligan, et al., “A simple, mixtures-based model for the
grain size dependence of strength in nanophase metals,” Nanostruct. Mater., 5, No. 4,
441–448 (1995).
3. D. A. Konstantinidis and E. C. Aifantis, “On the ‘anomalous’ hardness of nano-
crystalline materials,” Nanostruct. Mater., 10, No. 7, 1111–1118 (1998).
4. V. G. Gryaznov, M. Y. Gutkin, A. E. Romanov, and L. I. Trusov, “On the yield stress
of nanocrystals,” J. Mater. Sci., 28, No. 16, 4359–4365 (1993).
5. M. A. Meyers, A. Mishra, and D. J. Benson, “Mechanical properties of nano-
crystalline materials,” Prog. Mater. Sci., 51, No. 4, 427–556 (2006).
6. M. Ke, S. A. Hackney, W. W. Milligan, and E. C. Aifantis, “Observation and
measurement of grain rotation and plastic strain in nanostructured metal thin films,”
Nanostruct. Mater., 5, No. 6, 689–697 (1995).
7. I. Ovid’ko and E. C. Aifantis, “Nanocrystals & nanomechanics: mechanisms &
models. A selective review,” Rev. Adv. Mater. Sci., 35, No. 1-2, 1–24 (2013).
8. X. Zhang and K. E. Aifantis, “Interpreting the softening of nanomaterials through
gradient plasticity,” J. Mater. Res., 26, No. 11, 1399–1405 (2011).
9. K. E. Aifantis and A. A. Konstantinidis, “Hall–Petch revisited at the nanoscale,”
Mater. Sci. Eng. B, 163, No. 3, 139–144 (2009).
10. X. Zhang and K. E. Aifantis, “Accounting for grain boundary thickness in the
sub-micron and nano scales,” Rev. Adv. Mater. Sci., 26, No. 1-2, 74–90 (2010).
11. J. R. Trelewicz and C. A. Schuh, “The Hall–Petch breakdown in nanocrystalline
metals: a crossover to glass-like deformation,” Acta Mater., 55, No. 17, 5948–5958
(2007).
12. J. R. Trelewicz and C. A. Schuh, “The Hall–Petch breakdown at high strain rates:
optimizing nanocrystalline grain size for impact applications,” Appl. Phys. Lett., 93,
No. 17, 171916–171916-3 (2008).
X. Zhang and E. C. Aifantis
166 ISSN 0556-171X. Ïðîáëåìû ïðî÷íîñòè, 2015, ¹ 4
13. H. Conrad, “Grain size dependence of the plastic deformation kinetics in Cu,” Mater.
Sci. Eng. A, 341, No. 1-2, 216–228 (2003).
14. J. Chen, L. Lu, and K. Lu, “Hardness and strain rate sensitivity of nanocrystalline
Cu,” Scripta Mater., 54, No. 11, 1913–1918 (2006).
15. X. H. Zhu, J. E. Carsley, W. W. Milligan, and E. C. Aifantis, “On the failure of
pressure-sensitive plastic materials. Part I: Models of yield & shear band behavior,”
Scripta Mater., 36, No. 6, 721–726 (1997).
16. J. E. Carsley, W. W. Milligan, X. H. Zhu, and E. C. Aifantis, “On the failure of
pressure-sensitive plastic materials. Part II: Comparisons with experiments on ultra
fine grained Fe–10% Cu alloys,” Scripta Mater., 36, No. 6, 727–732 (1997).
17. A. C. Lund and C. A. Schuh, “Strength asymmetry in nanocrystalline metals under
multiaxial loading,” Acta Mater., 53, No. 11, 3193–3205 (2005).
18. T. D. Shen, C. C. Koch, T. Y. Tsui, and G. M. Pharr, “On the elastic moduli of
nanocrystalline Fe, Cu, Ni, and Cu–Ni alloys prepared by mechanical milling/
alloying,” J. Mater. Res., 10, 2892–2896 (1995).
19. G. Palumbo, S. J. Thorpe, and K. T. Aust, “On the contribution of triple junctions to
the structure and properties of nanocrystalline materials,” Scripta Metall. Mater., 24,
No. 7, 1347–1350 (1990).
20. M. D. Kluge, D. Wolf, J. F. Lutsko, and S. R. Phillpot, “Formalism for the calculation
of local elastic constants at grain boundaries by means of atomistic simulation,” J.
Appl. Phys., 67, 2370–2379 (1990).
21. G. W. Nieman, J. R. Weertman, and R. W. Siegel, “Mechanical behavior of
nanocrystalline Cu and Pd,” J. Mater. Res., 6, No. 5, 1012–1027 (1991).
22. J. Schi¸tz, T. Vegge, F. D. Di Tolla, and K. W. Jacobsen, “Atomic-scale simulations
of the mechanical deformation of nanocrystalline metals,” Phys. Rev. B, 60, 11971–
11983 (1999).
23. E. C. Aifantis, “On scale invariance in anisotropic plasticity, gradient plasticity and
gradient elasticity,” Int. J. Eng. Sci., 47, No. 11-12, 1089–1099 (2009).
Received 15. 05. 2014
Non-Monotonous Mechanical Behavior at the Nanoscale ...
ISSN 0556-171X. Ïðîáëåìû ïðî÷íîñòè, 2015, ¹ 4 167
|