Analysis of Vibration Natural Frequencies of Rotationally Restrained and Simply Supported Circular Plate with Weakened Interior Circle Due to an Angular Crack
Получено точное решение для описания колебаний шарнирно закрепленной по внешнему краю круговой пластины с ограничением по вращению, которая ослаблена круговой трещиной. Рассчитаны частоты шести первых мод колебаний пластины для различных значений упругих характеристик шарнирного защемления, радиуса...
Gespeichert in:
Datum: | 2015 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | English |
Veröffentlicht: |
Інститут проблем міцності ім. Г.С. Писаренко НАН України
2015
|
Schriftenreihe: | Проблемы прочности |
Schlagworte: | |
Online Zugang: | http://dspace.nbuv.gov.ua/handle/123456789/173398 |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Zitieren: | Analysis of Vibration Natural Frequencies of Rotationally Restrained and Simply Supported Circular Plate with Weakened Interior Circle Due to an Angular Crack / L. Bhaskara Rao,C. Kameswara Rao // Проблемы прочности. — 2015. — № 6. — С. 95-107. — Бібліогр.: 44 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-173398 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1733982020-12-03T01:27:25Z Analysis of Vibration Natural Frequencies of Rotationally Restrained and Simply Supported Circular Plate with Weakened Interior Circle Due to an Angular Crack Bhaskara Rao, L. Kameswara Rao, C. Научно-технический раздел Получено точное решение для описания колебаний шарнирно закрепленной по внешнему краю круговой пластины с ограничением по вращению, которая ослаблена круговой трещиной. Рассчитаны частоты шести первых мод колебаний пластины для различных значений упругих характеристик шарнирного защемления, радиуса круговой трещины и степени ослабления пластины трещиной. Наличие трещины моделируется в виде фиктивного упругого закрепления пластины по линии трещины. Показано, что ослабление пластины трещиной приводит к снижению собственной частоты колебаний на 30%. Предполагается, что использование результатов точного решения является перспективным при оценке влияния трещины на колебания круговой пластины с внешним шарнирным закреплением и ограничением по вращению и верификации данных, полученных приближенными численными методами, включая метод конечных элементов. Отримано точний розв’язок для опису коливань шарнірно закріпленої по зовнішньому краю кругової пластини з обмеженням по обертанню, яка послаблена круговою тріщиною. Розраховано частоти шести перших мод коливань пластини для різних значень пружних характеристик шарнірного затиснення, радіуса кругової тріщини та міри послаблення пластини тріщиною. Наявність тріщини моделюється у вигляді фіктивного пружного закріплення пластини по лінії тріщини. Показано, що послаблення пластини тріщиною призводить до зниження власної частоти коливань на 30%. Припускається, що використання результатів точного розв’язку є перспективним при оцінці впливу тріщини на коливання кругової пластини із зовнішнім шарнірним закріпленням і обмеженням по обертанню та верифікації даних, що отримані наближеними числовими методами, включаючи з метод скінченних елементів. 2015 Article Analysis of Vibration Natural Frequencies of Rotationally Restrained and Simply Supported Circular Plate with Weakened Interior Circle Due to an Angular Crack / L. Bhaskara Rao,C. Kameswara Rao // Проблемы прочности. — 2015. — № 6. — С. 95-107. — Бібліогр.: 44 назв. — англ. 0556-171X http://dspace.nbuv.gov.ua/handle/123456789/173398 539.4 en Проблемы прочности Інститут проблем міцності ім. Г.С. Писаренко НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
topic |
Научно-технический раздел Научно-технический раздел |
spellingShingle |
Научно-технический раздел Научно-технический раздел Bhaskara Rao, L. Kameswara Rao, C. Analysis of Vibration Natural Frequencies of Rotationally Restrained and Simply Supported Circular Plate with Weakened Interior Circle Due to an Angular Crack Проблемы прочности |
description |
Получено точное решение для описания колебаний шарнирно закрепленной по внешнему краю круговой пластины с ограничением по вращению, которая ослаблена круговой трещиной. Рассчитаны частоты шести первых мод колебаний пластины для различных значений упругих характеристик шарнирного защемления, радиуса круговой трещины и степени ослабления пластины трещиной. Наличие трещины моделируется в виде фиктивного упругого закрепления пластины по линии трещины. Показано, что ослабление пластины трещиной приводит к снижению собственной частоты колебаний на 30%. Предполагается, что использование результатов точного решения является перспективным при оценке влияния трещины на колебания круговой пластины с внешним шарнирным закреплением и ограничением по вращению и верификации данных, полученных приближенными численными методами, включая метод конечных элементов. |
format |
Article |
author |
Bhaskara Rao, L. Kameswara Rao, C. |
author_facet |
Bhaskara Rao, L. Kameswara Rao, C. |
author_sort |
Bhaskara Rao, L. |
title |
Analysis of Vibration Natural Frequencies of Rotationally Restrained and Simply Supported Circular Plate with Weakened Interior Circle Due to an Angular Crack |
title_short |
Analysis of Vibration Natural Frequencies of Rotationally Restrained and Simply Supported Circular Plate with Weakened Interior Circle Due to an Angular Crack |
title_full |
Analysis of Vibration Natural Frequencies of Rotationally Restrained and Simply Supported Circular Plate with Weakened Interior Circle Due to an Angular Crack |
title_fullStr |
Analysis of Vibration Natural Frequencies of Rotationally Restrained and Simply Supported Circular Plate with Weakened Interior Circle Due to an Angular Crack |
title_full_unstemmed |
Analysis of Vibration Natural Frequencies of Rotationally Restrained and Simply Supported Circular Plate with Weakened Interior Circle Due to an Angular Crack |
title_sort |
analysis of vibration natural frequencies of rotationally restrained and simply supported circular plate with weakened interior circle due to an angular crack |
publisher |
Інститут проблем міцності ім. Г.С. Писаренко НАН України |
publishDate |
2015 |
topic_facet |
Научно-технический раздел |
url |
http://dspace.nbuv.gov.ua/handle/123456789/173398 |
citation_txt |
Analysis of Vibration Natural Frequencies of Rotationally Restrained and Simply Supported Circular Plate with Weakened Interior Circle Due to an Angular Crack / L. Bhaskara Rao,C. Kameswara Rao // Проблемы прочности. — 2015. — № 6. — С. 95-107. — Бібліогр.: 44 назв. — англ. |
series |
Проблемы прочности |
work_keys_str_mv |
AT bhaskararaol analysisofvibrationnaturalfrequenciesofrotationallyrestrainedandsimplysupportedcircularplatewithweakenedinteriorcircleduetoanangularcrack AT kameswararaoc analysisofvibrationnaturalfrequenciesofrotationallyrestrainedandsimplysupportedcircularplatewithweakenedinteriorcircleduetoanangularcrack |
first_indexed |
2025-07-15T10:03:46Z |
last_indexed |
2025-07-15T10:03:46Z |
_version_ |
1837706852934090752 |
fulltext |
UDC 539.4
Analysis of Vibration Natural Frequencies of Rotationally Restrained and
Simply Supported Circular Plate with Weakened Interior Circle Due to an
Angular Crack
L. Bhaskara Rao
a,1
and C. Kameswara Rao
b,2
a School of Mechanical and Building Sciences, VIT University, Chennai, Tamil Nadu, India
b Nalla Narsimha Reddy Engineering College, Ranga Reddy, Hyderabad, India
1 bhaskarbabu_20@yahoo.com
2 chellapilla95@gmail.com
ÓÄÊ 539.4
Àíàëèç ñîáñòâåííûõ ÷àñòîò êîëåáàíèé øàðíèðíî çàêðåïëåííîé êðóãîâîé
ïëàñòèíû ñ îãðàíè÷åíèåì ïî âðàùåíèþ, îñëàáëåííîé êðóãîâîé òðåùèíîé
Ë. Áõàñêàðà Ðàî
à
, ×. Êàìåñâàðà Ðàî
á
à Òåõíîëîãè÷åñêèé èíñòèòóò Âåëëîðå, ×åííàé, Òàìèëíàä, Èíäèÿ
á Íàëëà Íàðñèìõà Ðåääè òåõíè÷åñêèé êîëëåäæ, Ðàíãàðåääè, Õàéäàðàáàä, Èíäèÿ
Ïîëó÷åíî òî÷íîå ðåøåíèå äëÿ îïèñàíèÿ êîëåáàíèé øàðíèðíî çàêðåïëåííîé ïî âíåøíåìó êðàþ
êðóãîâîé ïëàñòèíû ñ îãðàíè÷åíèåì ïî âðàùåíèþ, êîòîðàÿ îñëàáëåíà êðóãîâîé òðåùèíîé.
Ðàññ÷èòàíû ÷àñòîòû øåñòè ïåðâûõ ìîä êîëåáàíèé ïëàñòèíû äëÿ ðàçëè÷íûõ çíà÷åíèé óïðó-
ãèõ õàðàêòåðèñòèê øàðíèðíîãî çàùåìëåíèÿ, ðàäèóñà êðóãîâîé òðåùèíû è ñòåïåíè îñëàáëåíèÿ
ïëàñòèíû òðåùèíîé. Íàëè÷èå òðåùèíû ìîäåëèðóåòñÿ â âèäå ôèêòèâíîãî óïðóãîãî çàêðåïëå-
íèÿ ïëàñòèíû ïî ëèíèè òðåùèíû. Ïîêàçàíî, ÷òî îñëàáëåíèå ïëàñòèíû òðåùèíîé ïðèâîäèò ê
ñíèæåíèþ ñîáñòâåííîé ÷àñòîòû êîëåáàíèé íà 30%. Ïðåäïîëàãàåòñÿ, ÷òî èñïîëüçîâàíèå
ðåçóëüòàòîâ òî÷íîãî ðåøåíèÿ ÿâëÿåòñÿ ïåðñïåêòèâíûì ïðè îöåíêå âëèÿíèÿ òðåùèíû íà
êîëåáàíèÿ êðóãîâîé ïëàñòèíû ñ âíåøíèì øàðíèðíûì çàêðåïëåíèåì è îãðàíè÷åíèåì ïî âðàùå-
íèþ è âåðèôèêàöèè äàííûõ, ïîëó÷åííûõ ïðèáëèæåííûìè ÷èñëåííûìè ìåòîäàìè, âêëþ÷àÿ
ìåòîä êîíå÷íûõ ýëåìåíòîâ.
Êëþ÷åâûå ñëîâà: êðóãîâàÿ ïëàñòèíà, ÷àñòîòà, îãðàíè÷åíèå ïî âðàùåíèþ, îñëàáëåí-
íàÿ ïëàñòèíà.
N o t a t i o n
D – flexural rigidity
K R1 – rotational spring stiffness at the outer edge
K R2 – rotational spring stiffness in the cracked region
R11 – non-dimensional rotational flexibility parameter at the outer edge
R22 – non-dimensional rotational flexibility parameter in the cracked region
k – non-dimensional frequency parameter
Introduction. Vibration of circular plates is of great importance in structural design
for dynamical loads [1–6]. The problem of free vibrations of uniform isotropic circular
plates with classical boundary conditions and internal strengthening has been studied in
© L. BHASKARA RAO, C. KAMESWARA RAO, 2015
ISSN 0556-171X. Ïðîáëåìû ïðî÷íîñòè, 2015, ¹ 6 95
detail [7–9]. Cawley and Adams [10] analyzed cracked circular plates by suitably diminishing
the values of elastic coefficients of the respective finite element at the nodal location of the
crack. Markström and Storákers [11] used the method of unravelling the nodes of the
respective finite elements along the face of the crack. Aggarwala and Ariel [12] computed
the natural frequencies of cracked circular plates with simply supported boundary conditions
by utilizing the second kind of homogeneous Fredholm integral.
Leissa et al. [13] studied the influence of V-notches of different angles and depths on
the dynamic behavior of circular plates that are completely free at their boundaries. McGee
et al. [14] investigated the free vibrations of thin circular plates with free or rigidly
constrained V-notches. Using the Ritz method, Yuan and Dickinson [15] investigated the
free vibrations of circular, annular and sector plates, which were partially supported along
their boundaries or had sectorial cut-outs. Van Rens et al. [16] studied the behavior of
perforated plates by tuning the properties of the homogenized plate to be equal to the global
properties of the same plate. Huang et al. [17] examined the effect of cracks on the dynamic
characteristics of a vibrating circular plate with free edge and a radial crack initiated from
the boundary by using an optical system called the AF-ESPI method with out-of-plane
displacement. Krawczuk et al. [18] presented a finite element elastoplastic model of a plate
having a through crack. Li et al. [19] studied the vibrational power flow characteristics of
circular plates having a surface crack at the periphery. Shi et al. [20] computed the
eigenfrequency of a cracked circular clamped baffled plate in contact with water and
obtained NAVMI factor for each mode of vibration using the method of iteration. Kim and
Jung [21] obtained the eigenfrequencies of free edge-rhombus plates with V-notches using
a similar method of iteration. Demir and Mermertas [22, 23] studied the natural frequencies
of annular plates with radial periodic through cracks and angular cracks by using sector
finite elements. Recently, Huang and Leissa [24] studied the influence of side cracks on the
eigenfrequencies and mode shapes of plates of rectangular shape with simply supported or
completely free boundary conditions. Liu et al. [25] studied the crack influence on the
dynamic characteristics of a perforated plate in contact with water using the ANSYS
software.
Utilizing the Mindlin thick plate theory, Huang et al. [26] implemented the Ritz
method to accurately determine the frequencies and nodal patterns of cracked rectangular
plates. Using the Rayleigh–Ritz method, Si et al. [27–29] studied the free vibration
behavior of a completely clamped cracked circular plate, a baffled cracked circular plate,
and a cracked rectangular plate, respectively, considering the influence of water on one
side. Chen et al. [30] studied the vibration characteristics of a cantilever rectangular plate
with side crack using Ritz method. Chen et al. [31, 32] performed mathematical analysis
and numerical study of true and spurious eigenequations for free vibration of plates using
the imaginary-part boundary element method (BEM). Lee et al. [33] performed the
analytical study and numerical experiments of true and spurious eigensolutions of free
vibration of circular plates using the real-part BEM. Lee et al. [34–37] performed the
analysis of a circular plate with multiple holes by using indirect BIEMs, the multipole
Trefftz method, the direct BIEM and the addition theorem, respectively.
However, weakening of a plate may be induced by the presence of partial cracks and
internal notching. Only two papers authored by Wang [38] and Yu [39] dealing with free
vibration characteristics of circular plates with internal and having simply supported or
clamped boundary conditions, as well as movable or free edge conditions, respectively,
could be found in the available literature In both studies, the weakened portion was
modeled as a hinge with an appropriately computed rotational restraint parameter
depending upon the characteristics of the crack present in the plate. Even though the
circular symmetry of the plate permits for a substantial interpretation of the problem, very
often difficulties escalate due to the intricacy of the respective boundary condition
involved. Here the complexity is due to realistic situations where boundary conditions are
L. Bhaskara Rao and C. Kameswara Rao
96 ISSN 0556-171X. Ïðîáëåìû ïðî÷íîñòè, 2015, ¹ 6
complex and do not fall under the usual classical boundary conditions. Using the
appropriate elastic linear and rotational restraints [40–43], solutions for these complex
boundary conditions can be obtained. In a recent study of Bhaskara Rao and Kameswara
Rao [44], the vibrations of circular plates weakened along the interior circle and with
elastic edge restrictions against translation were analyzed.
As per authors’ knowledge, no other research paper addressing the non-classical
complex boundary conditions, such as rotationally restrained and simply supported
condition at the edge of plate, has yet been published. Therefore, the aim of this paper is to
study the effect of weakening of a rotationally restrained and simply supported along the
outer edge thin circular plate along a concentric circle due to an angular crack by using the
exact method of solution approach. Here, the angular crack is modeled as a hinge with a
rotational restraint parameter, while the natural frequencies of a circular plate for different
values of the rotational restraint parameter along the plate edge, the radius of the weakened
circle, Poisson’s ratio and the rotational restraint with hinge of the cracked region are
obtained for the further use in the design of cracked and weakened circular plates, which
are applied in engineering, e.g., in the design of doors and hatches used in aircraft and
spacecraft, as well as in vibration control and structural design.
1. Analytical Formulations. The plate is rotationally restrained and simply supported
at the outer edge, i.e., at a radius of R from the center, as shown in Fig. 1. The radius of
the weakened circle because of crack is considered as bR, where b is only a fraction of 1.
Here, all lengths are normalized with respect to R, i.e., the radius of the outer region is 1,
while the radius of the inner cracked region is b. The subscript I corresponds to the outer
region b r� �1, and subscript II to the inner region 0� �r b. Here, h, �, R, and E
represent the plate thickness, Poisson’s ratio, radius, and elastic modulus, respectively.
The general form of the lateral displacement of vibration of a classical plate can be
expressed as w u r n ei t� ( )cos( ) ,� � where (r, �) are polar coordinates, n is the number of
modal diameters, w is transverse displacement, � is frequency, and t is time. The
function u r( ) is a linear combination of the Bessel functions J krn ( ), Y krn ( ), I krn ( ), and
K krn ( ), and k R D� ( ) ,/��2 1 4 where k is the square root of non-dimensional frequency
[2] and � is the density. General solution for regions I and II are as follows:
u r C J kr C Y kr C I kr C K krI n n n n( ) ( ) ( ) ( ) ( ),� � � �1 2 3 4 (1)
u r C J kr C I krII n n( ) ( ) ( ),� �5 6 (2)
Analysis of Vibration Natural Frequencies ...
ISSN 0556-171X. Ïðîáëåìû ïðî÷íîñòè, 2015, ¹ 6 97
Fig. 1. A circular plate with rotationally restrained and simply supported edge and an angular crack.
where r designates the distance measured from the center of plate, whose maximum value
is R. Considering a simply supported and rotationally restrained outer edge, the boundary
conditions at outer edge are
M r K
w r
r
r R
I
( , )
( , )
,�
�
� 1 (3)
w rI ( , ) ,� � 0 (4)
where the bending moment is defined as
M r
D
R
w r
r r
w r
r r
w r
r
I I I
( , )
( , ) ( , ) ( , )
�
�
�
�
�
�
� �
2
2 2
2
1 1
�2
�
�
�
�
�
�
�
�
�
�
�
�
�
�
. (5)
Equations (3) and (5) yield the following expression:
�
�
�
�
�
2
2 2
2
2
1 1w r
r r
w r
r r
w rI I I( , ) ( , ) ( , )
� �
�
�
�
�
�
�
�
�
�
�
�
�
�
�
� K
w r
r
R
I
1
�
( , )
. (6)
Equations (4) and (6) can be expressed as
�� � �
�
�u r u r n u r R u rI I I I( ) [ ( ) ( )] ( ),� 2
11 (7)
u rI ( ) ,� 0 (8)
where R K R DR11 1� is the normalized spring constant K R1 of the rotational spring
stiffness.
At r b� , the plate, except for the slope, is continuous in terms of displacement,
moment, and shear, whereas the continuity requirement [38] at the interface of regions I
and II can be formulated as
u b u bI II( ) ( ),� (9)
bu b u b bu b u bI I II II�� � � � �� � �( ) ( ) ( ) ( ),� � (10)
b u b n u b b u b nI I II
2 2 2 21 2 1 2���
�
� � � ���
�( ) [ ( ) ] ( ) ( ) [ (� �
� �� �) ] ( ).u bII (11)
The moment is set to be proportional to the difference of the slopes
b u b bu b n u b b R u b uII II II I II
2 2 2
22�� � �
� �
�( ) [ ( ) ( )] [ ( ) (� b )], (12)
where R K R DR22 2� is the normalized spring constant and K R2 is the rotational spring
stiffness, which is utilized for modeling the rotational restraint created by the angular crack
at r b� . Damage detection experiments can establish the values of rotational stiffness of
the crack by matching the theoretically estimated frequency with the one obtained from the
experimental studies. Evidently, the stiffness coefficient value K R2 depends on the crack
depth and inclination angle. The non-trivial solutions to Eqs. (7)–(12) are sought.
Eventually, Eqs. (1), (2) and (7)–(12) yield the following dependencies:
98 ISSN 0556-171X. Ïðîáëåìû ïðî÷íîñòè, 2015, ¹ 6
L. Bhaskara Rao and C. Kameswara Rao
k
R P
k
P
k
n J k Cn
2 4 2
11 1
2
2
2
2
1[( ) ] ( )� �� �
�
�
�
�
�
�
�
�
�
�
�
�
� �
� � �
�
�
�
�
�
�
�
�
�
�
�
�
� �
k
R Q
k
Q
k
n Y k Cn
2 4 2
11 1
2
2
2
2
2[( ) ] ( )� �
� � � �
�
�
�
�
�
�
�
�
�
�
�
� �
k
R R
k
R
k
n I k Cn
2 4 2
11 1
2
2
2
2
3[( ) ] ( )� �
� �
�
�
�
�
�
�
�
�
�
�
�
� �
k
R S
k
S
k
n K k Cn
2 4 2
11 1
2
2
2
2
4[( ) ] ( )� � 0, (13)
[ ( )] [ ( )] [ ( )] [ ( )] ,J k C Y k C I k C K k Cn n n n1 2 3 4 0� � � � (14)
[ ( )] [ ( )] [ ( )] [ ( ) ]J kb C Y kb C I kb C K kb Cn n n n1 2 3 4� � �
�[ ( )] [ ( )] ,J kb C I kb Cn n5 6 0 (15)
bk
P
k
P
bk
J kb C
bk
Q
k
Q
b
n
2
2 1
2
1
2
2 1
4 2 2 4 2
�� �
�
�
�
�
�
� � � � �
� �
( )
k
Y kb Cn
2
2
2
( )
�
�
�
�
�
� �
� � � ��
�
�
�
�
�
� � �
��
bk
R
k
R
bk
I kb C
bk
S
k
Sn
2
2 1
2
3
2
2 1
4 2 2 4 2
� �
( )
bk
K kb Cn
2
4
2
( )
�
�
�
�
�
�
�� �
�
�
�
�
�
�
� � ��
bk
P
k
P
bk
J kb C
bk
R
k
Rn
2
2 1
2
5
2
2 1
4 2 2 4 2
� �
( )
bk
I kb Cn
2
6
2
0( ) ,
�
�
�
�
�
� � (16)
b k
P
k b k
n P C
2 3
3
2 2
2
1 1
8 2
3
4
1 2�
� �
�
�
�
�
�
�
� �
�
�
�
�
�
�( ( ) )� � �
� �
� �
�
�
�
�
�
�
� �
�
�
�
�
�
�
b k
Q
k b k
n Q C
2 3
3
2 2
2
1
8 2
3
4
1 2( ( ) )� � 2 �
� � �
�
�
�
�
�
�
�
� �
�
�
�
�
�
�
b k
R
k b k
n R C
2 3
3
2 2
2
1
8 2
3
4
1 2( ( ) )� � 3 �
�
� �
� �
�
�
�
�
�
�
� �
�
�
�
�
�
b k
S
k b k
n S
2 3
3
2 2
2
1
8 2
3
4
1 2( ( ) )� � � �C4
� �� � �
�
�
�
�
�
�
� �
�
�
�
�
�
�
b k
P
k b k
n P C
2 3
3
2 2
2
1
8 2
3
4
1 2( ( ) )� � 5 �
ISSN 0556-171X. Ïðîáëåìû ïðî÷íîñòè, 2015, ¹ 6 99
Analysis of Vibration Natural Frequencies ...
�
� �
� �
�
�
�
�
�
�
� �
�
�
�
�
�
b k
R
k b k
n R
2 3
3
2 2
2
1
8 2
3
4
1 2( ( ) )� � � �C6 0, (17)
b kR
P C
b kR
Q C
b kR
R
2
22
1 1
2
22
1 2
2
22
1
2 2 2
�
�
�
�
�
�
� � �
�
�
�
�
�
� � �
�
�
�
�
�
�
�
�
�
�
�
�
�
C
b kR
S C3
2
22
1 4
2
�� � �
�
�
�
�
�
�
�
�
�
�
b k
P
kb
bR P
b k
n J kbn
2 2
2 22 1
2 2
2
4 2 2
( ) ( )�
�
�
�
C5
� � � ��
�
�
�
�
�
�
�
�
�
b k
R
kb
bR R
b k
n I kbn
2 2
2 22 1
2 2
2
4 2 2
( ) ( )�
�
�
� �C6 0, (18)
where
P J k J kn n1 1 1�
�( ) ( ), P J k J kn n2 2 2� �
�( ) ( ), P J k J kn n3 3 3�
�( ) ( ),
Q Y k Y kn n1 1 1�
�( ) ( ), Q Y k Y kn n2 2 2� �
�( ) ( ), Q Y k Y kn n3 3 3�
�( ) ( ),
R I k I kn n1 1 1� �
�( ) ( ), R I k I kn n2 2 2� �
�( ) ( ), R I k I kn n3 3 3� �
�( ) ( ),
S K k K kn n1 1 1� �
�( ) ( ), S K k K kn n2 2 2� �
�( ) ( ), K K k K kn n3 3 3� �
�( ) ( ),
��
�P J kb J kbn n1 1 1( ) ( ), � � �
�P J kb J kbn n2 2 2( ) ( ), � �
�P J kb J kbn n3 3 3( ) ( ),
� �
�Q Y kb Y kbn n1 1 1( ) ( ), � � �
�Q Y kb Y kbn n2 2 2( ) ( ), � �
�Q Y kb Y kbn n3 3 3( ) ( ),
� � �
�R I kb I kbn n1 1 1( ) ( ), � � �
�R I kb I kbn n2 2 2( ) ( ), � � �
�R I kb I kbn n3 3 3( ) ( ),
� � �
�S K kb K kbn n1 1 1( ) ( ), � � �
�S K kb K kbn n2 2 2( ) ( ),
� � �
�S K kb K kbn n3 3 3( ) ( ).
2. Results and Discussion. The above equations are used to obtain the exact
characteristic equation by eliminating the coefficients of C1 , C2 , C3 , C4 , C5 , and C6. For
a non-trivial solution, the determinant of [ ]C 6 6� must be equal to zero. The frequency
parameter k can be obtained by solving the characteristic equation via a simple root search
method for a given set of n, �, R11 , R22 , and b. Using the mathematica software with
symbolic competencies, the exact solutions to this problem are obtained. The numerical
result of frequency parameter k obtained from analysis is presented in a pictographic
format. Poisson’s ratio employed here is 0.3. The frequency values for various magnitudes
of R22 and a constant R11 (R11 2� ) are tabulated in Table 1. The values of frequency
parameter k for n� 5 modes with R22 0� , 2, 4, 6, 8, 10, 25, 50, 100, and 1016 and
R11 2� are obtained. For b� 1 and R22 0� , the plate frequencies can be seen to be the
same as those of the plate with no weakening crack.
For a given set of values of b and �, the first frequency for a value of n� 0, the
modal frequency converges to that of the plate with no weakening as R22 is increased
starting from a value of 0. When � � 0.3, the first six frequencies of the plate with no
weakening are obtained as 2.60309 (n� 0), 3.97077 (n� 1), 5.24447 (n� 2), 6.47023
100 ISSN 0556-171X. Ïðîáëåìû ïðî÷íîñòè, 2015, ¹ 6
L. Bhaskara Rao and C. Kameswara Rao
( ),n� 3 7.66549 (n� 4), and 8.8391 (n� 5). Noteworthy is that the fundamental frequency
of the plate weakened along an internal concentric circle and resting on the elastically
restrained edge against rotation and simply supported edge occurs at n� 0 mode. The
variation of the plate fundamental frequency for variable values of the weakened circle
radius and the rotational restraint parameter of hinge is presented in Fig. 2. Here, frequency
decreases with R22 , and is the lowest for R22 0� , which is a case of a frictionless circular
hinge. The internal weakening decreases the fundamental frequency by 2.60309, which
makes it lower than that of a plate with no weakening by less than 15% (14.662%). For a
given value of R22, the frequency k decreases from 2.60309 to 2.38445, then increases to
2.58649 and finally drops to 2.22145 as the radius b of the weakened circle varies from 0
to 1. The local maximum frequency 2.60309 occurs at b� 0.7. This is the optimal location,
where the plate requires to be notched (as a closed hatch). The internal weakening has a
minute effect, i.e., it decreases the fundamental frequency by less than 9% (8.4%)] when
0 0 4� �b . . Moreover, it has a more pronounced effect on the fundamental frequency, i.e.,
decreases the fundamental frequency by less than 15%, when b� 0.7.
The frequency values for various magnitudes of R22 and a constant R11 (R11 10� )
are tabulated in Table 1. The first frequencies (k) of n� 5 modes with R22 0� , 2, 4, 6, 8,
10, 25, 50, 100, and 1016 and R11 2� are obtained. For b� 1 and R22 0� , the plate
frequencies are same as those of the plate with no weakening. For the given values of b
and �, the first frequency of n� 0 mode converges to that of a plate with no weakening as
R22 increases from 0. When � � 0.3, the first six frequencies of the plate with no
weakening are: 2.95829 (n� 0), 4.30618 (n� 1), 5.55404 ( ),n� 2 6.75602 (n� 3), 7.93028
ISSN 0556-171X. Ïðîáëåìû ïðî÷íîñòè, 2015, ¹ 6 101
Analysis of Vibration Natural Frequencies ...
T a b l e 1
Fundamental Frequency Parameter k for a Circular Hinge with � � 0 3. , R22 0� ,
and Different Values of R11
b 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
R11 �
� 2
2.60312 2.56339 2.47855 2.40828 2.38445 2.41551 2.49588 2.58649 2.58137 2.43418 2.22145
R11 �
�10
2.95826 2.91071 2.81960 2.76548 2.78082 2.86027 2.94944 2.91290 2.71201 2.45934 2.22145
R11 �
�1000
3.19296 3.13583 3.03446 2.98881 3.03054 3.13626 3.18937 3.03205 2.74937 2.46594 2.22145
Fig. 2. The fundamental frequency and concentric weakened radius parameter for different R22,
R11 2� , � � 0.3, and n � 0.
(n� 4), and 9.08575 (n� 5). Noteworthy is that the fundamental frequency of the plate
weakened along an internal concentric circle and resting on the elastically restrained edge
against rotation and simply supported edge occurs at n� 0 mode. The plate fundamental
frequencies varying with the radius of the weakened circle and the elastic rotational
restraint of the hinge are presented in Fig. 3. The frequency decreases with R22, and is the
lowest for R22 0� , which is a case of a frictionless circular hinge. The internal weakening
decreases the fundamental frequency by 2.95829 making it less than that of the plate with
no weakening by 25%.
For a given value of R22, the frequency k decreases from 2.95829 to 2.76548, then
increases to 2.94944 and finally drops to 2.22145 as the radius b of the weakened circle
varies from 0 to 1. The local maximum frequency 2.95829 occurs at b� 0.6. This is the
optimum location where the plate needs to be notched. For 0 0 3� �b . the internal
weakening has a feeble effect on the fundamental frequency, decreasing it by less than 7%.
A stronger effect on the fundamental frequency is observed for b� 0.6 – it drops by less
than 25%. The plate higher-mode frequencies of plate varying with radius of the weakened
circle and elastic rotational restraint of the hinge are presented in Figs. 4–8.
The frequencies for various values of R22 and constant R11 (R11 1000� ) are
tabulated in Table 1. The first frequencies (k) of n� 5 modes with R22 0� , 2, 4, 6, 8, 10,
102 ISSN 0556-171X. Ïðîáëåìû ïðî÷íîñòè, 2015, ¹ 6
L. Bhaskara Rao and C. Kameswara Rao
Fig. 3. The fundamental frequency and concentric weakened radius parameter for different R22 ,
R11 10� , � � 0.3, and n � 0.
Fig. 4. The fundamental frequency and concentric weakened radius parameter for different R22 ,
R11 10� , � � 0.3, and n �1.
25, 50, 100, and 1016 and R11 1000� are determined. For b� 1 and R22 0� , the plate
frequency is equal that with no weakening. For the specified values of b and �, the first
frequency of n� 0 mode converges to that with weakening as R22 increases from 0.
ISSN 0556-171X. Ïðîáëåìû ïðî÷íîñòè, 2015, ¹ 6 103
Analysis of Vibration Natural Frequencies ...
Fig. 5. The fundamental frequency and concentric weakened radius parameter for different R22 ,
R11 10� , � � 0.3, and n � 2.
Fig. 6. The fundamental frequency and concentric weakened radius parameter for different R22 ,
R11 10� , � � 0.3, and n � 3.
Fig. 7. The fundamental frequency and concentric weakened radius parameter for different R22 ,
R11 10� , � � 0.3, and n � 4.
When � � 0.3, the first six frequencies of the plate with no weakening are: 3.19297 (n� 0),
4.60631 (n� 1), 5.89977 (n� 2), 7.13636 (n� 3), 8.33825 (n� 4), and 9.51625 (n� 5). It is
observed that the fundamental frequency of the plate weakened along an internal concentric
circle and resting on elastically restrained edge against rotation and simply supported edge
occurs at n� 0 mode.
The plate fundamental frequency variations with the radius of weakened circle and
elastic rotational restraint of the hinge are presented in Fig. 9, where frequency decreases
with R22, and is the lowest for R22 0� , which is a case of a frictionless circular hinge.
Here, the internal weakening decreases the fundamental frequency 3.19297 that is less than
that with no weakening by 31%. For the given value of R22, the frequency decreases from
3.19297 to 2.98881, then increases to 3.18937, and finally drops to 2.22145, as the radius b
of the weakened circle varies from 0 to 1. The local maximum frequency 3.19297 occurs at
b� 0.6. This is the optimum location where the plate needs to be notched. The internal
weakening has a feeble effect on the fundamental frequency (drops it by less than 7%)
when 0 0 3� �b . . For the case of b� 0 6. , the fundamental frequency drops drastically (by
31%).
In all above-discussed cases, if b� 1, the system is reduced to the case of a circular
plate with elastic edge restraints. A fundamental frequency for the case of R22 0� , which
models a through circular crack, is tabulated in Table 1.
104 ISSN 0556-171X. Ïðîáëåìû ïðî÷íîñòè, 2015, ¹ 6
L. Bhaskara Rao and C. Kameswara Rao
Fig. 8. The fundamental frequency and concentric weakened radius parameter for different R22 ,
R11 10� , � � 0.3, and n � 5.
Fig. 9. The fundamental frequency and concentric weakened radius parameter for different R22 ,
R11 1000� , � � 0.3, and n � 0.
To the best of the authors’ knowledge, the results for a circular plate with rotationally
restrained and simply supported boundary presented here, are quite new and, hence, can be
compared only with those available for the classical boundary conditions, such as simply
supported and clamped plate [38] by setting the rotational restraint with R11 0� and
R11 � �, respectively, as well as non-classical boundaries, such as a plate with an edge,
which is elastically restrained from translation [44] with R11 � � by setting R11 0� . Here,
the internal weakening decreases the fundamental frequency by less than 1% for the
clamped plate and less than 1% when b is 0 or 1 for the simply supported plate.
Conclusions. The circular plate frequency variation versus the values of elastic
rotational restraint, elastic rotational restraint of hinge and the radius of the weakened circle
is determined. The crack-induced internal weakening of a plate with elastically restrained
rotation and simply supported edge is found to decrease the fundamental frequency by less
than 15% for to R11 2� , about 25% for R11 10� and 31% for R11 1000� . It is observed
that internal weakening provides a stronger reduction of the fundamental frequency at
higher values of elastic rotational restraint: at R11 2� the respective drop is 14.662%,
whereas at R11 1000� it is 30.4266%. In addition, frequencies are obtained for different
rotational parameters: a clamped boundary is simulated by R11 � �and a simply supported
boundary by R11 0� . Accuracy of the results obtained is provided by the closed form of
the proposed solution.
Ð å ç þ ì å
Îòðèìàíî òî÷íèé ðîçâ’ÿçîê äëÿ îïèñó êîëèâàíü øàðí³ðíî çàêð³ïëåíî¿ ïî çîâí³ø-
íüîìó êðàþ êðóãîâî¿ ïëàñòèíè ç îáìåæåííÿì ïî îáåðòàííþ, ÿêà ïîñëàáëåíà êðóãî-
âîþ òð³ùèíîþ. Ðîçðàõîâàíî ÷àñòîòè øåñòè ïåðøèõ ìîä êîëèâàíü ïëàñòèíè äëÿ
ð³çíèõ çíà÷åíü ïðóæíèõ õàðàêòåðèñòèê øàðí³ðíîãî çàòèñíåííÿ, ðàä³óñà êðóãîâî¿
òð³ùèíè òà ì³ðè ïîñëàáëåííÿ ïëàñòèíè òð³ùèíîþ. Íàÿâí³ñòü òð³ùèíè ìîäåëþºòüñÿ ó
âèãëÿä³ ô³êòèâíîãî ïðóæíîãî çàêð³ïëåííÿ ïëàñòèíè ïî ë³í³¿ òð³ùèíè. Ïîêàçàíî, ùî
ïîñëàáëåííÿ ïëàñòèíè òð³ùèíîþ ïðèçâîäèòü äî çíèæåííÿ âëàñíî¿ ÷àñòîòè êîëèâàíü
íà 30%. Ïðèïóñêàºòüñÿ, ùî âèêîðèñòàííÿ ðåçóëüòàò³â òî÷íîãî ðîçâ’ÿçêó º ïåðñïåê-
òèâíèì ïðè îö³íö³ âïëèâó òð³ùèíè íà êîëèâàííÿ êðóãîâî¿ ïëàñòèíè ³ç çîâí³øí³ì
øàðí³ðíèì çàêð³ïëåííÿì ³ îáìåæåííÿì ïî îáåðòàííþ òà âåðèô³êàö³¿ äàíèõ, ùî îòðè-
ìàí³ íàáëèæåíèìè ÷èñëîâèìè ìåòîäàìè, âêëþ÷àþ÷è ç ìåòîä ñê³í÷åííèõ åëåìåíò³â.
1. S. Timoshenko and S. Woinowsky-Krieger, Theory of Plates and Shells, McGraw-
Hill, New York (1959).
2. A. J. Mcleod and R. E. D. Bishop, The Forced Vibration of Circular Flat Plates,
Institution of Mechanical Engineers, London (1965), pp. 1–33.
3. A. W. Leissa, Vibration of Plates, NASA SP-160 (1969).
4. A. W. Leissa, “Recent research in plate vibrations: classical theory,” Shock Vibr. Dig.,
9, No. 10, 13–24 (1977).
5. R. Szilard, Theory and Analysis of Plates, Prentice-Hall, New Jersey (1974).
6. M. Amabili, Nonlinear Vibrations and Stability of Shells and Plates, Cambridge
University Press, New York (2008).
7. S. Azimi, “Free vibration of circular plates with elastic or rigid interior support,” J.
Sound Vibr., 120, 37–52 (1988).
8. G. N. Weisensel, “Natural frequency information for circular and annular plates,” J.
Sound Vibr., 133, 129–134 (1989).
9. C. Y. Wang and C. M. Wang, “Fundamental frequencies of circular plates with
internal elastic ring support,” J. Sound Vibr., 263, 1071–1078 (2003).
ISSN 0556-171X. Ïðîáëåìû ïðî÷íîñòè, 2015, ¹ 6 105
Analysis of Vibration Natural Frequencies ...
10. P. Cawley and R. D. Adams, “The location of defects in structures from
measurements of natural frequencies,” J. Strain Anal. Eng. Des., 14, 49–57 (1979).
11. K. Markström and B. Storákers, “Buckling of cracked members under tension,” Int. J.
Solids Struct., 16, 217–229 (1980).
12. B. D. Aggarwala and P. D. Ariel, “Vibration and bending of a cracked plate,” Eng.
Trans., 29, 295–310 (1981).
13. A. W. Leissa, O. G. McGee, and C. S. Huang, “Vibrations of circular plates having
V-notches or sharp radial cracks,” J. Sound Vibr., 161, 227–239 (1993).
14. O. G. Mcgee, A. W. Leissa, C. S. Huang, and J. W. Kim, “Vibration of circular plates
with clamped V-notches or rigidly constrained radial cracks,” J. Sound Vibr., 181,
185–201 (1995).
15. J. Yuan and S. M. Dickinson, “On the vibration of annular, circular and sectorial
plates with cut-outs or on partial supports,” Comput. Struct., 58, 1261–1264 (1996).
16. B. J. E. van Rens, W. A. M. Brekelmans, and F. P. T. Baaijens, “Homogenization of
the elastoplastic behavior of perforated plates,” Comput. Struct., 69, 537–545 (1998).
17. C.-H. Huang and C.-C. Ma, “Vibration of cracked circular plates at resonance
frequencies,” J. Sound Vibr., 236, 637–656 (2000).
18. M. Krawczuk, A. Zak, and W. Ostachowicz, “Finite element model of plate with
elasto-plastic through crack,” Comput. Struct., 79, 519–532 (2001).
19. T. Y. Li, J. X. Liu, and T. Zhang, “Vibrational power flow characteristics of circular
plate structures with peripheral surface crack,” J. Sound Vibr., 276, 1081–1091
(2004).
20. H. W. Shi, Z. Y. Shang, M. Guo, and H. Tian, “On the vibration frequencies of a
circular plate with an artificial crack in water based on finite element method,”
Chinese J. Mech. Eng., 40, 142–146 (2004).
21. J. W. Kim and H. Y. Jung, “Influence of stress singularities on the vibration of
rhombic plates with V-notches or sharp cracks,” Key Eng. Mater., 270-273, 1414–
1419 (2004).
22. A. Demir and V. Mermertas, “A study on annular plates with radial through cracks by
means of sector type element,” J. Sound Vibr., 300, 466–478 (2007).
23. A. Demir and V. Mermertas, “Natural frequencies of annular plates with circumferential
cracks by means of sector type element,” Eng. Fract. Mech., 75, 1143–1155 (2008).
24. C. S. Huang and A. W. Leissa, “Vibration analysis of rectangular plates with side
cracks via the Ritz method,” J. Sound Vibr., 323, 974–988 (2009).
25. T. Liu, K. Wang, Q. W. Dong, and M. S. Liu, “Hydroelastic natural vibrations of
perforated plates with cracks,” Proc. Eng., 1, 129–133 (2009).
26. C. S. Huang, A. W. Leissa, andR. S. Li, “Accurate vibration analysis of thick cracked
rectangular plates,” J. Sound Vibr., 330, 2079–2093 (2011).
27. X. H. Si, W. X. Lu, and F. L. Chu, “Wet mode analysis of completely clamped
circular plate with a side radial crack,” J. Vibr. Eng., 24, 595–599 (2011).
28. X. H. Si, W. X. Lu, and F. L. Chu, “Modal analysis of circular plates with radial side
cracks and in contact with water on one side based on the Rayleigh–Ritz method,” J.
Sound Vibr., 331, 231–251 (2012).
29. X. H. Si, W. X. Lu, F. L. Chu, “Dynamic analysis of rectangular plates with a single
side crack and in contact with water on one side based on the Rayleigh–Ritz method,”
J. Fluid Struct., 34, 90–104 (2012).
106 ISSN 0556-171X. Ïðîáëåìû ïðî÷íîñòè, 2015, ¹ 6
L. Bhaskara Rao and C. Kameswara Rao
30. L. H. Chen, Y. Sun, and W. Zhang, “Study of vibration characteristics of cantilever
rectangular plate with side crack,” Appl. Mech. Mater., 226-228, 113–118 (2012).
31. J. T. Chen, S. Y. Lin, I. L. Chen, and Y. T. Lee, “Mathematical analysis and
numerical study of true and spurious eigenequations for free vibration of plates using
imaginary-part BEM,” J. Sound Vibr., 293, 380–408 (2006).
32. J. T. Chen, S. Y. Lin, I. L. Chen, and Y. T. Lee, “Mathematical analysis and
numerical study for free vibration of annular plates using BIEM and BEM,” Int. J.
Numer. Meth. Eng., 65, 236–263 (2006).
33. W. M. Lee and J. T. Chen, “Analytical study and numerical experiments of true and
spurious eigensolutions of free vibration of circular plates using real-part BEM,” Eng.
Anal. Bound. Elem., 32, 368–387 (2008).
34. W. M. Lee, J. T. Chen, and Y. T. Lee, “Free vibration analysis of circular plates with
multiple circular holes using indirect BIEMs,” J. Sound Vibr., 304, 811–830 (2007).
35. W. M. Lee and J. T. Chen, “Free vibration analysis of a circular plate with multiple
circular holes by using multipole Trefftz method,” Comput. Model. Eng. Sci., 50,
141–159 (2009).
36. W. M. Lee and J. T. Chen, “Eigensolutions of a circular plate with multiple circular
holes by using the direct BIEM and addition theorem,” Eng. Anal. Bound. Elem., 34,
1064–1071 (2010).
37. W. M. Lee and J. T. Chen, “Free vibration analysis of a circular plate with multiple
circular holes by using addition theorem and indirect BIEM,” J. Appl. Mech., 78, 1–10
(2011).
38. C. Y. Wang, “Fundamental frequency of a circular plate weakened along a concentric
circle,” J. Appl. Mathem. Mech., 82, 70–72 (2002).
39. L. H. Yu, “Frequencies of circular plate weakened along an internal concentric
circle,” Int. J. Struct. Stab. Dyn., 9, 179–185 (2009).
40. C. S. Kim and S. M. Dickinson, “The flexural vibration of the isotropic and polar
orthotropic annular and circular plates with elastically restrained peripheries,” J.
Sound Vibr., 143, 171–179 (1990).
41. L. B. Rao and C. K. Rao, “Buckling of circular plates with a ring support and
elastically restrained edge,” Adv. Vibr. Eng., 8, 291–297 (2009).
42. C. Y. Wang and C. M. Wang, “Buckling of circular plates with an internal ring
support and elastically restrained edges,” Thin-Wall Struct., 39, 821–825 (2001).
43. L. Bhaskara Rao and C. Kameswara Rao, “Fundamental buckling of circular plates
with elastically restrained edges and resting on concentric rigid ring support,” Front.
Mech. Eng., 8, 291–297 (2013).
44. L. Bhaskara Rao and C. Kameswara Rao, “Frequencies of circular plates weakened
along an internal concentric circle and elastically restrained edge against translation,”
J. Appl. Mech., 80, No. 1, 011005 (2013).
Received 13. 12. 2013
Revised 11. 12. 2015
ISSN 0556-171X. Ïðîáëåìû ïðî÷íîñòè, 2015, ¹ 6 107
Analysis of Vibration Natural Frequencies ...
|