Comparison of the Energy Absorption of Closed Cell Aluminum Foam Produced by Various Foaming Agents

Исследовано влияние пенообразующих добавок гидрида титана TiH₂ и карбоната кальция CaCО₃ на энергопоглощение в пористых структурах с закрытыми ячейками на основе алюминиевого сплава А356. Образцы с двумя различными пористыми структурами были получены путем добавки TiH₂ и CaCО₃ в расплав алюминиевого...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Datum:2016
Hauptverfasser: Movahedi, N., Mirbagheri, S.M.H.
Format: Artikel
Sprache:English
Veröffentlicht: Інститут проблем міцності ім. Г.С. Писаренко НАН України 2016
Schriftenreihe:Проблемы прочности
Schlagworte:
Online Zugang:http://dspace.nbuv.gov.ua/handle/123456789/173482
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Comparison of the Energy Absorption of Closed Cell Aluminum Foam Produced by Various Foaming Agents / N. Movahedi, S.M.H. Mirbagheri // Проблемы прочности. — 2016. — № 3. — С. 128-134. — Бібліогр.: 9 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-173482
record_format dspace
spelling irk-123456789-1734822020-12-06T01:26:27Z Comparison of the Energy Absorption of Closed Cell Aluminum Foam Produced by Various Foaming Agents Movahedi, N. Mirbagheri, S.M.H. Научно-технический раздел Исследовано влияние пенообразующих добавок гидрида титана TiH₂ и карбоната кальция CaCО₃ на энергопоглощение в пористых структурах с закрытыми ячейками на основе алюминиевого сплава А356. Образцы с двумя различными пористыми структурами были получены путем добавки TiH₂ и CaCО₃ в расплав алюминиевого сплава А356 при температуре 700°С. Электронно-микроскопический анализ образцов показывает, что ячейки структур, полученных путем добавки CaCО₃, являются более мелкими и однородными, чем в случае добавки TiH₂. Механические характеристики пористых образцов определяли по данным испытания на одноосное сжатие. Установлено, что при 50%-ном уровне деформации энергопоглощение образцов, полученных путем добавки CaCО₃, на 100% выше такового образцов, полученных при добавке TiH₂. Досліджено вплив пінотвірних додатків гідриду титана TiH₂ і карбонату кальцію СаСО₃ на енергопоглинання у пористих структурах із закритими комірками на основі алюмінієвого сплаву. Зразки з двома різними пористими структурами отримано шляхом додатка TiH₂ і СаСО₃ у розплав алюмінієвого сплаву А356 за температури 700°С. Електронно-мікроскопічний аналіз зразків показав, що комірки структур, отриманих шляхом додатка СаСО₃, є більш мілкими й однорідними, ніж у випадку додатка TiH₂. Механічні характеристики пористих зразків визначали за даними випробувань на одновісний стиск. Установлено, що за 50%-ного рівня деформації енергопоглинання зразків, що отримані шляхом додатка СаСО₃, на 100% більше, ніж зразків, отриманих при додатку TiH₂. 2016 Article Comparison of the Energy Absorption of Closed Cell Aluminum Foam Produced by Various Foaming Agents / N. Movahedi, S.M.H. Mirbagheri // Проблемы прочности. — 2016. — № 3. — С. 128-134. — Бібліогр.: 9 назв. — англ. 0556-171X http://dspace.nbuv.gov.ua/handle/123456789/173482 539.4 en Проблемы прочности Інститут проблем міцності ім. Г.С. Писаренко НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
topic Научно-технический раздел
Научно-технический раздел
spellingShingle Научно-технический раздел
Научно-технический раздел
Movahedi, N.
Mirbagheri, S.M.H.
Comparison of the Energy Absorption of Closed Cell Aluminum Foam Produced by Various Foaming Agents
Проблемы прочности
description Исследовано влияние пенообразующих добавок гидрида титана TiH₂ и карбоната кальция CaCО₃ на энергопоглощение в пористых структурах с закрытыми ячейками на основе алюминиевого сплава А356. Образцы с двумя различными пористыми структурами были получены путем добавки TiH₂ и CaCО₃ в расплав алюминиевого сплава А356 при температуре 700°С. Электронно-микроскопический анализ образцов показывает, что ячейки структур, полученных путем добавки CaCО₃, являются более мелкими и однородными, чем в случае добавки TiH₂. Механические характеристики пористых образцов определяли по данным испытания на одноосное сжатие. Установлено, что при 50%-ном уровне деформации энергопоглощение образцов, полученных путем добавки CaCО₃, на 100% выше такового образцов, полученных при добавке TiH₂.
format Article
author Movahedi, N.
Mirbagheri, S.M.H.
author_facet Movahedi, N.
Mirbagheri, S.M.H.
author_sort Movahedi, N.
title Comparison of the Energy Absorption of Closed Cell Aluminum Foam Produced by Various Foaming Agents
title_short Comparison of the Energy Absorption of Closed Cell Aluminum Foam Produced by Various Foaming Agents
title_full Comparison of the Energy Absorption of Closed Cell Aluminum Foam Produced by Various Foaming Agents
title_fullStr Comparison of the Energy Absorption of Closed Cell Aluminum Foam Produced by Various Foaming Agents
title_full_unstemmed Comparison of the Energy Absorption of Closed Cell Aluminum Foam Produced by Various Foaming Agents
title_sort comparison of the energy absorption of closed cell aluminum foam produced by various foaming agents
publisher Інститут проблем міцності ім. Г.С. Писаренко НАН України
publishDate 2016
topic_facet Научно-технический раздел
url http://dspace.nbuv.gov.ua/handle/123456789/173482
citation_txt Comparison of the Energy Absorption of Closed Cell Aluminum Foam Produced by Various Foaming Agents / N. Movahedi, S.M.H. Mirbagheri // Проблемы прочности. — 2016. — № 3. — С. 128-134. — Бібліогр.: 9 назв. — англ.
series Проблемы прочности
work_keys_str_mv AT movahedin comparisonoftheenergyabsorptionofclosedcellaluminumfoamproducedbyvariousfoamingagents
AT mirbagherismh comparisonoftheenergyabsorptionofclosedcellaluminumfoamproducedbyvariousfoamingagents
first_indexed 2025-07-15T10:08:48Z
last_indexed 2025-07-15T10:08:48Z
_version_ 1837707170365308928
fulltext UDC 539.4 Comparison of the Energy Absorption of Closed Cell Aluminum Foam Produced by Various Foaming Agents N. Movahedi a,1 and S. M. H. Mirbagheri b a Department of Materials and Industrial Engineering, Semnan University, Semnan, Iran b Department of Mining and Metallurgical Engineering, Amirkabir University of Technology, Tehran, Iran 1 Nima.movahedi@gmail.com ÓÄÊ 539.4 Ñðàâíèòåëüíûé àíàëèç ýíåðãîïîãëîùåíèÿ ïîðèñòûõ ñòðóêòóð ñ çàêðûòûìè ÿ÷åéêàìè íà îñíîâå àëþìèíèåâîãî ñïëàâà ñ ðàçëè÷íûìè ïåíîîáðàçóþùèìè äîáàâêàìè Í. Ìîâàõåäè à , Ñ. Ì. Õ. Ìèðáàãõåðè á à Óíèâåðñèòåò ã. Ñåìíàí, Èðàí á Òåõíîëîãè÷åñêèé óíèâåðñèòåò èì. Àìèðà Êàáèðà, Òåãåðàí, Èðàí Èññëåäîâàíî âëèÿíèå ïåíîîáðàçóþùèõ äîáàâîê ãèäðèäà òèòàíà TiH2 è êàðáîíàòà êàëüöèÿ CaCÎ3 íà ýíåðãîïîãëîùåíèå â ïîðèñòûõ ñòðóêòóðàõ ñ çàêðûòûìè ÿ÷åéêàìè íà îñíîâå àëþìèíèåâîãî ñïëàâà À356. Îáðàçöû ñ äâóìÿ ðàçëè÷íûìè ïîðèñòûìè ñòðóêòóðàìè áûëè ïîëó÷åíû ïóòåì äîáàâêè TiH2 è CaCÎ3 â ðàñïëàâ àëþìèíèåâîãî ñïëàâà À356 ïðè òåìïåðàòóðå 700�Ñ. Ýëåêòðîííî-ìèêðîñêîïè÷åñêèé àíàëèç îáðàçöîâ ïîêàçûâàåò, ÷òî ÿ÷åéêè ñòðóêòóð, ïîëó÷åííûõ ïóòåì äîáàâêè CaCÎ3, ÿâëÿþòñÿ áîëåå ìåëêèìè è îäíîðîäíûìè, ÷åì â ñëó÷àå äîáàâêè TiH2. Ìåõàíè÷åñêèå õàðàêòåðèñòèêè ïîðèñòûõ îáðàçöîâ îïðåäåëÿëè ïî äàííûì èñïûòàíèÿ íà îäíîîñíîå ñæàòèå. Óñòàíîâëåíî, ÷òî ïðè 50%-íîì óðîâíå äåôîðìàöèè ýíåðãî- ïîãëîùåíèå îáðàçöîâ, ïîëó÷åííûõ ïóòåì äîáàâêè CaCO3, íà 100% âûøå òàêîâîãî îáðàçöîâ, ïîëó÷åííûõ ïðè äîáàâêå TiH2. Êëþ÷åâûå ñëîâà: ïîðèñòàÿ ñòðóêòóðà ñ çàêðûòûìè ÿ÷åéêàìè íà îñíîâå àëþìè- íèåâîãî ñïëàâà, ïåíîîáðàçóþùàÿ äîáàâêà, ÿ÷åèñòàÿ ñòðóêòóðà, ýíåðãîïîãëîùåíèå. Introduction. Aluminum foam (AF) is one of the most important types of cellular metals that can be produced with an open or closed cell structure. This material has a broad range of applications in a variety of industries such as transportation, building, aerospace, and automotive. Aluminum foams can be produced with powder metallurgy or melting techniques. On an industrial scale, the most promising method for the production of aluminum foam is melting. According to the bubble formation mechanism, there are two methods for the production of closed-cell aluminum foams through melting: air injection [1] or incorporation of foaming agent [2] in powder form to the aluminum melt. In both methods, the aluminum melt would first be thickened by appropriate additives such as SiCp [3], Al2O3 [4] particles, or calcium granules [5]. Then, the foaming process would be completed by the injection of air or the addition of an appropriate foaming agent. Titanium hydride (TiH2) is the material most frequently used as a foaming agent in the aluminum foam production industry. But there are some important considerations that should be taken into account during the fabrication of aluminum foam with TiH2 in order to avoid deterioration of the mechanical properties of the resultant foam. For example, Matijasevic © N. MOVAHEDI, S. M. H. MIRBAGHERI, 2016 128 ISSN 0556-171X. Ïðîáëåìû ïðî÷íîñòè, 2016, ¹ 3 and Banhart showed that heat pre-treatment of the TiH2 powder is necessary to improve cell size distribution [6]. The price of this material is also a controversial topic which exists among producers of aluminum foam on an industrial scale. And, one of the important factors that influence the final price of closed-cell aluminum foam in the market is related to TiH2 cost. Other foaming agents, such as CaCO3, have also been applied successfully to produce closed cell aluminum foams [7]. In this research, two distinct closed cell aluminum foams produced with TiH2 and CaCO3 as foaming agents at the same foaming temperature with a casting method. In spite of studies done separately producing closed cell aluminum foams with these foaming materials, a comparative study to analyze the cellular structures and mechanical properties of relevant foams has not been done carefully. The main objective of this study is to evaluate and compare the mechanical properties and cellular structure of these foams. This study will help to determine which of these two foaming agents is more suitable for the synthesis of closed cell aluminum foam for applications such as energy absorption. In fact, in this study no foaming agent has been rejected, but which one is more appropriate for particular applications was shown. 1. Materials and Experimental Methods. The aluminum foams in this study were synthesized by melting. For this purpose, two distinct closed-cell A356 alloy structures were prepared by adding TiH2 and CaCO3 as foaming agents at the same foaming temperature. The foaming process is comprised of four stages when TiH2 is used as the gas releasing agent: (i) melting aluminum alloy at 700�C; (ii) the addition of 2 wt.% calcium metal (1–3 mm) and stirring the molten aluminum at 500–700 rpm for 10 min to make the molten metal viscous enough; (iii) the addition of 1 wt.% heat treated TiH2 to the Al–Ca composite at 1200–1500 rpm for 1 min; (iv) pouring the precursor to the mold and holding it for 3 min at 700�C to produce closed aluminum foam. For the aluminum foam structure that was made with calcium carbonate, the foaming procedure involved three stages: (i) melting A356 aluminum alloy at 700�C; (ii) incorporation of 5 wt.% CaCO3 into the melt and stirring for 1 min at 1200–1500 rpm; (iii) holding the precursor at 700�C for 5 min. In the latter sample, it was shown that the calcium oxide produced as a result of CaCO3 decomposition will thicken the molten aluminum, therefore no other ingredient was added before the foaming stage. The calcium oxide makes the molten aluminum viscous enough to entrap the produced CO2 bubbles inside the liquid phase. Uniaxial compressive tests according to ASTM E9 were performed on aluminum foam rectangular specimens with a dimension of 25 25 20� � mm to evaluate the mechanical properties and energy absorption of the cellular structures. A scanning electron microscope was also utilized to observe the pore structure and morphology of the aluminum foams. 2. Results and Discussions. Figure 1 reveals the compressive stress–strain curves of the foam samples under a uniaxial compression test. In both cases, the curves exhibit three distinct regions. The first stage is the initial deformation zone where stress increases linear to the peak. After that, the curve continues into the stress plateau region � pl , which represents cell collapse. In this stage, cells will collapse and strain is not recoverable. This behavior is important for cellular materials when their main application is energy absorption. In the third stage, densification of the foam will occur. In Fig. 2, the relative density (�r ) and porosity (�) of the synthesized cellular structures in this study is shown. The relative density and porosity of the aluminum foams are calculated in Eqs. (1) and (2), respectively, [8]. The density of the foam samples was determined according to the ASTM D6683 standard for each sample � � �r f s � , (1) � � � � �1 f s . (2) Comparison of the Energy Absorption of Closed Cell Aluminum Foam ... ISSN 0556-171X. Ïðîáëåìû ïðî÷íîñòè, 2016, ¹ 3 129 The relative density of AFCaCO3 is about 18% higher than that of AFTiH2 . It can be seen that the relative density of the foam affects the compressive stress–strain curves. The plateau region in the aluminum foam sample with CO2 applied to produce the pores is shorter in comparison with the AFTiH2 sample, or, in other words, under compressive loads, N. Movahedi and S. M. H. Mirbagheri 130 ISSN 0556-171X. Ïðîáëåìû ïðî÷íîñòè, 2016, ¹ 3 Fig. 1. Compressive stress–strain curves of AFCaCO3 (1) and AFTiH 2 (2) samples. a b Fig. 2. Relative density (a) and porosity of aluminum foam samples (b). the use of TiH2 as a foaming agent produces a cellular structure with a higher porosity level that density the cellular structure at higher strains, meaning that this structure allows the bubbles to collapse and deform. This behavior is also reported for aluminum foams that are produced using a powder metallurgy method [4]. Also, the relative density of the aluminum foam has an important effect on the mechanical properties of the cellular structure. From the compressive stress–strain curves, it can be deduced that the closed cell structures in AFCaCO3 show greater compressive strength in comparison to the AFTiH2 sample (Fig. 3). Under compressive loads, according to the Gibson–Ashby model, a linear relationship exists between relative yield stress and relative density [8]. Unlike open cell foams, the stretching of the cell faces also occurs, as well as cell edge bending. Therefore, the structure of the foam in this case would be important. The microstructure of the aluminum foams is illustrated in Fig. 4. It is obvious that the pore size of the closed cell aluminum foams produced with CaCO3 is considerably smaller than those synthesized with TiH2. The polygonal shape of the pores in the cellular structure reveals that the interaction of the bubbles within the molten aluminum that has been foamed with TiH2 is greater than with CO2 gases. In Fig. 5, the interaction of two adjacent growing bubbles and the development of the transient cell wall is shown. As a result of rapid bubble expansion, transient cell walls ISSN 0556-171X. Ïðîáëåìû ïðî÷íîñòè, 2016, ¹ 3 131 Comparison of the Energy Absorption of Closed Cell Aluminum Foam ... Fig. 3. Compressive strength of aluminum foam samples. a b Fig. 4. Microstructure of aluminum foam samples produced with different foaming agent TiH2 (a) and CaCO3 (b). develop between the two pores and will produce a cellular structure with non-rounded bubbles and move the system away from equilibrium. The magnitude of the interaction between two neighboring cells depends on surface tension, viscosity, growth velocity, and the size of the bubbles [9]. As the foaming agent is added to the molten aluminum at a specific temperature, decomposition will occur, and the gas released will interact with the molten aluminum. According to the macroscopic images of the cellular structures in Fig. 6, it is obvious that in the aluminum foam sample with TiH2 there are some signs of cell wall curvature. Under compressive deformation, these polygonal shaped cells will behave as stress concentration centers and deteriorate the mechanical properties of the cellular structures. While in the aluminum foam sample with CaCO3, the microscopic structure reveals a more uniform cell shape. So, under compressive loads, the cellular structure resists plastic hinges and more stress is required to collapse the structure. The compressive stress–strain curve of AFCaCO3 shows the sample hardening in the first stage of deformation. This phenomenon contributes to the thicker cell walls of this sample, while the thinning, rupture, and curvature of the cell walls and cell faces in the aluminum foam sample with TiH2 foaming agent deteriorates the yield strength of the cellular structure considerably. (Cell wall and cell edge ruptures and curvatures are indicated in Fig. 4a and Fig. 6a.) Another parameter that may increase the strength of the aluminum foam sample produced with CaCO3 is the intrinsic property of CaO in improving cell wall stability and strength in comparison to calcium. Energy absorption is an important factor in evaluating the properties of metal foams, and the energy absorption of the aluminum foams was calculated according to Eq. (3) [8]: W d D � � , 0 (3) 132 ISSN 0556-171X. Ïðîáëåìû ïðî÷íîñòè, 2016, ¹ 3 N. Movahedi and S. M. H. Mirbagheri Fig. 5. Interaction of growing adjacent bubbles and development of transient cell wall [9]. a b Fig. 6. Pore morphology and cell wall of produced aluminum foam sample with TiH2 (a) and CaCO3 (b). where W is the absorbed energy, � is the compressive stress, and D is the densification strain. In Fig. 7, the energy absorption of the aluminum foam samples is shown. The strain at which densification takes place is known as the densification strain ( D ) and is calculated by Eq. (4): � � � � �D f s f s � � � �� � � ��� � �� � � �� � � � � � � � � 1 14 04 3 . . , (4) where � is a constant, approx. 1 for cellular structure, and � f and �s are the foam and cell wall material density [9]. As seen in Fig. 1, the densification strain of AFCaCO3 is about 0.48, and for AFTiH2 is about 0.77. This means that in AFTiH2 , densification will occur at higher strain levels, and consequently the surface area under the compressive stress–strain curve will increase. However, up to 50% strain, the energy absorption of AFCaCO3 is considerably higher. Conclusions. In this work, two distinct closed cell aluminum foams were fabricated via melting at identical foaming temperature. Mechanical investigations revealed that due to the thicker cell walls and finer pores within AFCaCO3 , the energy absorption was considerably higher than that of AFTiH2 . This characteristic makes AFCaCO3 more suitable for certain applications, particularly in the automotive industry. It is also important to take into account that the processing and fabrication of closed cell aluminum foam with calcium carbonate is cheaper and easier to handle in comparison to the TiH2 foaming agent. Ð å ç þ ì å Äîñë³äæåíî âïëèâ ï³íîòâ³ðíèõ äîäàòê³â ã³äðèäó òèòàíà TiH2 ³ êàðáîíàòó êàëüö³þ ÑàÑÎ3 íà åíåðãîïîãëèíàííÿ ó ïîðèñòèõ ñòðóêòóðàõ ³ç çàêðèòèìè êîì³ðêàìè íà îñíîâ³ àëþì³í³ºâîãî ñïëàâó. Çðàçêè ç äâîìà ð³çíèìè ïîðèñòèìè ñòðóêòóðàìè îòðèìàíî øëÿõîì äîäàòêà TiH2 ³ ÑàÑÎ3 ó ðîçïëàâ àëþì³í³ºâîãî ñïëàâó À356 çà òåìïåðàòóðè 700�Ñ. Åëåêòðîííî-ì³êðîñêîï³÷íèé àíàë³ç çðàçê³â ïîêàçàâ, ùî êîì³ðêè ñòðóêòóð, îòðè- ìàíèõ øëÿõîì äîäàòêà ÑàÑÎ3, º á³ëüø ì³ëêèìè é îäíîð³äíèìè, í³æ ó âèïàäêó äîäàòêà TiH2. Ìåõàí³÷í³ õàðàêòåðèñòèêè ïîðèñòèõ çðàçê³â âèçíà÷àëè çà äàíèìè ISSN 0556-171X. Ïðîáëåìû ïðî÷íîñòè, 2016, ¹ 3 133 Comparison of the Energy Absorption of Closed Cell Aluminum Foam ... Fig. 7. Energy absorption of aluminum foams. âèïðîáóâàíü íà îäíîâ³ñíèé ñòèñê. Óñòàíîâëåíî, ùî çà 50%-íîãî ð³âíÿ äåôîðìàö³¿ åíåðãîïîãëèíàííÿ çðàçê³â, ùî îòðèìàí³ øëÿõîì äîäàòêà ÑàÑÎ3, íà 100% á³ëüøå, í³æ çðàçê³â, îòðèìàíèõ ïðè äîäàòêó TiH2. 1. D. Wang, W. Xue, and Z. Shi, “Cell size prediction of a closed aluminum foam,” Mater. Sci. Eng. A, 431, No. 1-2, 298–305 (2006). 2. L. E. G. Cambronero, J. M. Ruiz-Roman, F. A. Corpas, and J. M. Ruiz Prieto, “Manufacturing of Al–Mg–Si alloy foam using calcium carbonate as foaming agent,” J. Mater. Process. Technol., 209, No. 4, 1803–1809 (2009). 3. O. Prakash, H. Sang, and J. D. Embury, “Structure and properties of Al–SiC foam,” Mater. Sci. Eng. A, 199, No. 2, 195–203 (1995). 4. M. Alizadeh and M. Mirzaei-Aliabadi, “Compressive properties and energy absorption behavior of Al–Al2O3 composite foam synthesized by space-holder technique,” Mater. Des., 35, 419–424 (2012). 5. N. Movahedi, S. M. H. Mirbagheri, and S. R. Hosseini, “Effect of foaming temperature on the mechanical properties of produced closed-cell A356 aluminum foams with melting method,” Met. Mater. Int., 20, No. 4, 757–763 (2014). 6. B. Matijasevic and J. Banhart, “Improvement of aluminium foam technology by tailoring of blowing agent,” Scripta Mater., 54, 503–508 (2006). 7. J. Lázaro, E. Solórzano, and M. A. Rodriguez-Pérez, “Alternative carbonates to produce aluminium foams via melt route,” Proc. Mater. Sci., 4, 275–280 (2014). 8. H. P. Degischer and B. Kriszt, Handbook of Cellular Metals Production, Processing, Applications, Wiley-VCH Verlag GmbH, Weinheim (2002). 9. C. Koerner, Integral Foam Molding of Light Metals, Springer-Verlag, Berlin– Heidelberg (2008). Received 27. 04. 2015 134 ISSN 0556-171X. Ïðîáëåìû ïðî÷íîñòè, 2016, ¹ 3 N. Movahedi and S. M. H. Mirbagheri