Prospects for the use of plasma spraying in medicine
The aim of this paper is to analyze the experience in and the prospects for using plasma spraying in the solution of medicine-related problems.
Збережено в:
Дата: | 2019 |
---|---|
Автори: | , |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут технічної механіки НАН України і НКА України
2019
|
Назва видання: | Технічна механіка |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/174066 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Prospects for the use of plasma spraying in medicine / V.P. Kamkov, V.P. Dzhevinsky // Технічна механіка.— 2019.— № 3.— С. 111-118.— Бібліогр.: 24 назв.— англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-174066 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1740662020-12-31T01:25:57Z Prospects for the use of plasma spraying in medicine Kamkov, V.P. Dzhevinsky, V.P. The aim of this paper is to analyze the experience in and the prospects for using plasma spraying in the solution of medicine-related problems. Цель статьи – проанализировать опыт и перспективы использования плазменного напыления для решения задач, связанных с медициной. Мета статті – проаналізувати досвід і перспективи використання плазмового напилення для вирішення завдань, пов'язаних з медициною. 2019 Article Prospects for the use of plasma spraying in medicine / V.P. Kamkov, V.P. Dzhevinsky // Технічна механіка.— 2019.— № 3.— С. 111-118.— Бібліогр.: 24 назв.— англ. 1561-9184 DOI: doi.org/10.15407/itm2019.03.111 http://dspace.nbuv.gov.ua/handle/123456789/174066 621.793 / 616.77 en Технічна механіка Інститут технічної механіки НАН України і НКА України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
description |
The aim of this paper is to analyze the experience in and the prospects for using plasma spraying in the solution of medicine-related problems. |
format |
Article |
author |
Kamkov, V.P. Dzhevinsky, V.P. |
spellingShingle |
Kamkov, V.P. Dzhevinsky, V.P. Prospects for the use of plasma spraying in medicine Технічна механіка |
author_facet |
Kamkov, V.P. Dzhevinsky, V.P. |
author_sort |
Kamkov, V.P. |
title |
Prospects for the use of plasma spraying in medicine |
title_short |
Prospects for the use of plasma spraying in medicine |
title_full |
Prospects for the use of plasma spraying in medicine |
title_fullStr |
Prospects for the use of plasma spraying in medicine |
title_full_unstemmed |
Prospects for the use of plasma spraying in medicine |
title_sort |
prospects for the use of plasma spraying in medicine |
publisher |
Інститут технічної механіки НАН України і НКА України |
publishDate |
2019 |
url |
http://dspace.nbuv.gov.ua/handle/123456789/174066 |
citation_txt |
Prospects for the use of plasma spraying in medicine / V.P. Kamkov, V.P. Dzhevinsky // Технічна механіка.— 2019.— № 3.— С. 111-118.— Бібліогр.: 24 назв.— англ. |
series |
Технічна механіка |
work_keys_str_mv |
AT kamkovvp prospectsfortheuseofplasmasprayinginmedicine AT dzhevinskyvp prospectsfortheuseofplasmasprayinginmedicine |
first_indexed |
2025-07-15T10:56:37Z |
last_indexed |
2025-07-15T10:56:37Z |
_version_ |
1837710178172010496 |
fulltext |
111
UDC 621.793 / 616.77 https://doi.org/10.15407/itm2019.03.111
V. P. KAMKOV, V. P. DZHEVINSKY
PROSPECTS FOR THE USE OF PLASMA SPRAYING IN MEDICINE
Institute of Technical Mechanics
of the National Academy of Sciences of Ukraine and the State Space Agency of Ukraine, 15 Leshko-Popel St.,
Dnipro 49005, Ukraine; e-mail: novyje@ex.ua
Мета статті – проаналізувати досвід і перспективи використання плазмового напилення для вирі-
шення завдань, пов'язаних з медициною.
Основні напрямки використання плазмового напилення для медичних цілей – виготовлення імплан-
татів для стоматологічної практики, а також протезів для протезування кісток і суглобів в ортопедії.
Система «металевий імплантат – кісткова тканина» є найбільш складним варіантом композиційного
матеріалу, формування якого відбувається в живому організмі. У статті проаналізовано чинники, які треба
враховувати для успішного виготовлення імплантатів, призначених для тривалого використання в органі-
змі пацієнта. Для біотехнологій їх виготовлення в даний час застосовують переважно титан і його сплави
(наносяться на металеві частини протезів, збільшуючи їх зносостійкість), гідроксиапатит і флюорит (ма-
ють близьку до кісткової тканини структуру, в результаті чого протези не відторгаються і вростають в
кістки).
Представлено практичні результати використання плазмового напилення для виготовлення протезів,
а також особливості формування поверхонь імплантатів. Обговорюються аспекти «остеоз'єднання» порис-
тої структури – здатності матеріалу сприяти проростанню кісткової тканини вглиб і вздовж імплантату,
«остеоуведення» – додаткової здатності структури і поведінки нової кісткової тканини на локальному
рівні. Викладено уявлення про структуру поверхні імплантатів, яка найбільшою мірою сприяє інтеграції
їх з кістковою тканиною.
Наведено результати діагностичних методів, які в даний час використовуються в медико-
біологічних дослідженнях з метою контролю якості протезів, виготовлених із застосуванням методів пла-
змового напилення.
Загальним висновком аналізу досягнень у галузі використання плазмового напилення при виготов-
ленні протезів є таке: щільність заповнення пористого шару на поверхні імплантату новою кістковою
тканиною і міцність цієї кісткової тканини визначають ефективність передачі навантаження з імплантату
на кісткову тканину, механічну міцність такого композиційного матеріалу, довговічність роботи імпланта-
ту. Дане положення є критерієм контролю результатів під час подальшого вдосконалення технології пла-
змового напилення при використанні її для медичних цілей.
Ключові слова: плазмове напилення, виготовлення протезів, виготовлення зубних імплантів, дослі-
дження структури матеріалів, методи контролю міцності, біосумісність, методи дослідження біологі-
чних тканин.
Цель статьи – проанализировать опыт и перспективы использования плазменного напыления для
решения задач, связанных с медициной.
Основные направления использования плазменного напыления для медицинских целей – изготовле-
ние имплантатов для стоматологической практики, а также протезов для протезирования костей и суста-
вов в ортопедии.
Система «металлический имплантат – костная ткань» является наиболее сложным вариантом компо-
зиционного материала, формирование которого происходит в живом организме. В статье проанализирова-
ны факторы, которые надо учитывать для успешного изготовления имплантатов, предназначенных для
длительного использования в организме пациента. Для биотехнологий их изготовления в настоящее время
применяют преимущественно титан и его сплавы (наносятся на металлические части протезов, увеличивая
их износостойкость), гидроксиапатит и флюорит (имеют близкую к костной ткани структуру, в результате
чего протезы не отторгаются и врастают в кости).
Представлены практические результаты использования плазменного напыления для изготовления
протезов, а также особенности формирования поверхностей имплантатов. Обсуждаются аспекты
«остеосоединения» пористой структуры – способности материала содействовать прорастанию костной
ткани вглубь и вдоль имплантата, «остеовведения» – дополнительной способности структуры и поведения
новой костной ткани на локальном уровне. Изложены представления о структуре поверхности импланта-
тов, которая в наибольшей степени благоприятствует интеграции их с костной тканью.
Приведены результаты диагностических методов, которые в настоящее время используются в меди-
ко-биологических исследованиях с целью контроля качества протезов, изготовленных с применением
методов плазменного напыления.
Общим выводом анализа достижений в области использования плазменного напыления при изго-
товлении протезов является следующее: плотность заполнения пористого слоя на поверхности имплантата
новой костной тканью и прочность этой костной ткани определяют эффективность передачи нагрузки с
имплантата на костную ткань, механическую прочность такого композиционного материала, долговеч-
ность работы имплантата. Данное положение является критерием контроля результатов в ходе дальнейше-
V. P. Kamkov, V. P. Dzhevinsky, 2019
Техн. механіка. – 2019. – № 3.
112
го совершенствования технологии плазменного напыления при использовании её для медицинских целей.
Ключевые слова: плазменное напыление, изготовление протезов, изготовление зубных имплантов,
исследование структуры материалов, методы контроля прочности, биосовместимость, методы иссле-
дования биологических тканей.
The aim of this paper is to analyze the experience in and the prospects for using plasma spraying in the so-
lution of medicine-related problems.
The main lines in the medical use of plasma spraying are dental implant making and bone and joint pros-
thesis making.
The metal implant – bone tissue system is the most complex composite material formed in the human body.
The paper analyzes the factors that must be considered for the successful making of implants intended for a long-
term use in the patient's body. The main materials that are currently used in their making are titanium and its
alloys (they are applied to the metal parts of prostheses to increase their wear resistance), hydroxyapatite (HA),
and fluorite (they have a structure similar to the bone tissue, as a result of which the prostheses are not rejected
and grow into the bone).
The paper presents practical results of the use of plasma spraying in prosthesis making and the features of
implant surface formation. The aspects of porous structure “osteojunction” (the ability of the material to promote
the growth of the bone tissue deep into and along the implant) and osteointroduction (an additional capability of
the structure and the behavior of the newly formed bone tissue at the local level) are discussed. Ideas of the sur-
face structure of implants best suited to their integration with the bone tissue are outlined.
The results of the diagnostic methods currently used in biomedical research to control the quality of pros-
theses made using plasma spraying are presented.
The general conclusion of the analysis of the achievements in the use of plasma spraying in prosthesis mak-
ing is as follows: the density of filling of the porous layer on the implant surface with the newly formed bone
tissue and the strength of that bone tissue determine the efficiency of implant-to-bone load transfer, the mechani-
cal strength of the resulting composite material, and the implant durability. This statement is a result assessment
criterion in the course of further improvement of plasma spraying for medical purposes.
Keywords: plasma spraying, prosthesis making, dental implant making, material structure study, strength
control methods, biocompatibility, biological tissue study methods.
Introduction. The bone system of a living organism is formed and maintained
as a result of complex biochemical reactions. One of the main elements in these
reactions are: calcium, phosphorus, oxygen, hydrogen. In case of failure of a part
of the skeletal system, it becomes necessary to replace the lost part with an im-
plant. At the present stage of prosthetics, large volumes of lost bones to the human
bone system are not regenerated. Lost areas of bone tissue are replaced by im-
plants, which are usually made of metallic materials based on titanium, cobalt or
tantalum.
The system «metal implant - bone tissue» is the most complex version of a
composite material, the formation of which occurs in a living organism. The com-
plexity of such a composite material has several components:
– the «building material» of the new bone tissue should be easily delivered to
the implant surface,
– the implant surface must have a certain physicochemical affinity for this
«building material»,
– the interface must have a developed geometric surface and have an interme-
diate modulus of elasticity to reduce the stress concentration resulting from a ten-
fold difference in the elastic moduli of the metal and bone,
– after bone tissue has grown into the implant surface, the boundary of the
case should have a strength not lower than the bone tissue strength,
– the implant surface structure should ensure the functioning of the new bone
tissue (delivery of nutrients and oxygen). There are three main factors that must be
considered for the successful use of implants for a long time in the patient's body [1]:
– bone quality in patients deteriorates after 60 years;
– the majority of high–strength materials for prostheses have high elastic
moduli in comparison with bone and, therefore, there is a «stress field» in the orig-
inal bone;
113
– micro–mobility at the «implant – bone» border leads to instability of this
border and deterioration of the implant, which further leads to damage to the origi-
nal bone tissue.
The last two factors are associated with a significant difference in the physi-
cochemical and mechanical properties of the implant and bone tissue. To reduce
the influence of these factors, it is necessary to create a transition zone between the
bone and the implant, which, along with a strong chemical bond, must have opti-
mal macro- and microstructures. Apparently, such a zone should have a composite
structure. It is assumed that the outer layer of this zone should coincide as much as
possible with the chemical composition of natural bone or be able to form bone
tissue on its surface. Plasma evaporation has become widespread to form the inter-
face between the implant and bone tissue.
1. Features of the use of plasma evaporation for solving problems related
to medicine. For biotechnology, the following materials are used: titanium and its
alloys (applied to the metal parts of the prostheses, increasing their wear re-
sistance), hydroxyapatite (HA) and fluorite (have a structure close to the bone tis-
sue, as a result of which the prostheses do not reject and grow into the bones).
When choosing materials that will be in contact with body tissues, the prevention
of the further formation of a large mass of non-functional connective tissue plays
an important role. Most often, HA - Ca10(PO4)6(OH)2 is used as a starting material
for bioactive coatings. During plasma evaporation of coatings, there is the problem
of preserving its initial chemical composition when creating a specific coating
structure. Therefore, for evaporation, HA-related compounds are used: tetra-
calcium phosphate — Ca4P2O4, three-calcium phosphate — Ca3(PO4)2, fluoride-
apatite. For the formation of coatings, bioactive glasses are used, both inde-
pendently and as additives (up to 50%) to HA [2]. To obtain bioactive glass, the
following materials are used [3]: (CaO) (SiO2), Na2CO3, CaCO3, H2PO4, and CaF2..
For evaporation HA or similar material for its intended purpose, mainly arc
plasma torches are used. For evaporation, the conventional evaporation scheme is
used when the substrate is located from the plasma torch at a distance of 80 mm -
120 mm [4]. When evaporation oxides and materials with thermic-physical proper-
ties close to them, mixtures of plasma gases are used. This is due to the relatively
high melting point and the relatively low heat capacity of the material of the HA
particles. Therefore, in order to preserve the particle in the molten state before the
impact with the substrate, a sufficiently effective heating of the particles is neces-
sary.
A dense coating structure consisting of disc-shaped amorphous particles is
formed from completely melted HA evaporated particles. The decrease in the effi-
ciency of heating the particles leads to the retention of their unmelted core and an
increase in the porosity of the coating. The increase in the content of crystalline
phases in the coating during the formation of it is not fully molten particles [5], has
two aspects:
– improving the stability of crystalline HA during implant operation (a lower
degree of dissolution of HA);
– increasing the probability of destruction of a porous coating formed by
weakly deformed, not completely molten particles.
Bioactive continuous glass coatings with a thickness of 25–150 µm can be
successfully obtained by enameling [6], the technology takes into account most of
the physic-chemical phenomena associated with enameling of titanium implants.
114
The optimal structure of the surface of the prosthesis should have a composite
structure. The sublayer used titanium coating. During the deposition of HA coat-
ings, ZrO2, Zr-Ti, and Ti sublayers were used. ZrO2 sublayers make it possible to
reduce the cooling rate of HA evaporated particles when they solidify on the sub-
strate. Zr-Ti and Ti sublayers can increase the adhesion of HA coatings by 50%
and 100%, respectively [7]. In this case, a titanium oxide layer is formed on the
surface of the titanium alloy.
At present, as a rule, the micro-rough surface of the implant (after abrasive
treatment) is used for the deposition of coatings, and the macro roughness is used
less frequently. A significant effect of the size of cavities and ridges on the growth
of fibroblasts has been established [8]. The influence of the implant surface relief
and the application of cyclic load on the behavior of fibroblasts are analyzed.
Thus, increasing the depth of the grooves improves the orientation of fibroblasts [8].
Significant differences in the shear strength of implants with coatings [9] indi-
cate the need for additional studies on the general (standard) test method. At the
same time, quite definite conclusions can already be drawn from these data — HA-
coated implants have 6-60 times higher shear strength than uncoated implants.
Even when processing them with an abrasive, which creates a roughness, commen-
surate with the roughness of the coating. High shear strength in the case of HA
coating seems to be related to the ingrowth of bone into the HA coating. However,
it can be assumed that the bone tissue grows into the porous titanium substrate as
well as in the HA coating.
H. Harris [10] conducted a large-scale study of coatings of titanium and HA.
Two types of titanium coatings are formed by particles with a size of 22 - 90 mi-
crons and 75 - 180 microns. On top of these coatings evaporated coatings from HA
with a particle size of 90 microns. A titanium coating with a rougher surface is
deposited from a wire with a diameter of 1.6 mm. This coating on top was also
dusty HA. Photographs of the surface and transverse thin sections indicated that
the porous structure of the titanium coatings was filled with a HA coated coating.
It has been suggested that HA after implantation dissolves, and then a new HA is
formed, firmly connected to the surface of the titanium implant.
The high temperature of the plasma jet causes changes in the chemical compo-
sition of the evaporated material, and the high cooling rate of the evaporated parti-
cles when they harden on the substrate leads to changes in the phase composition
of the evaporated material [11]. Thus, when evaporation HA coatings, there is a
contradiction between obtaining a dense HA coating structure consisting of amor-
phous (completely melted during sputtering) particles and more rapid dissolution
of these amorphous particles in the human body. This contradiction can be elimi-
nated by subsequent heat treatment of the HA of the amorphous coating in order to
transfer it to the crystalline state [11]. This treatment achieves three goals:
– to increase in the content of the crystalline phase from 26% to 88%;
– to increase in the content of OH groups in HA;
– reducing the content of decomposition products of HA.
The positive result of this treatment is a reduction of almost three times the
dissolution rate of the coating in distilled water for 200 hours. There are options
for hydrothermal treatment, which allows to increase the content of HA phase in
the coating from 76% to 96% [12].
Bioactive materials based on crystalline calcium phosphates, calcium phos-
phate ceramics and glasses containing oxides of calcium and phosphorus, have the
115
unique ability to connect with bone tissue without a connective tissue layer and
form a single fragment «implant – bone» [13]. The bond strength between the bone
and the implant of bioactive material is much higher than with an implant of bio-
inert material. A significant drawback of bioactive materials, limiting their wide-
spread use in bone arthroplasty, is their low mechanical strength. The combination
of the bioactive properties of glasses and glass-ceramic materials with the mechan-
ical properties of titanium opens up great prospects for increasing the service life
of implants [13].
«Osteoconnection» of a porous structure is defined as the ability of a material
to promote the growth of bone tissue deep into and along the implant, while «oste-
oversion» is an additional ability of the structure and behavior of new bone tissue
at the local level [14]. The stoichiometry of HA and its mechanical properties af-
fect the ingrowth and fixation of bone tissue (its ultimate compressive strength
ranges from 1 to 11 MPa).
The use of implants with strictly deterministic surface properties has limita-
tions, since it is not possible to find the key surface characteristics that determine
the optimal biocompatible and functional properties of the implantable product
[15]. There is another area of research where «self-regulating» materials are devel-
oped that change their properties due to relatively small changes in the physical or
chemical effects of the environment. When contacting with blood, hem-compatible
materials should have a minimum value of interfacial free energy and the same
distribution pattern of polar and dispersive components of free energy of the sur-
face of the material and blood (plasma proteins).
Plasma technologies for producing materials are widely used to form porous
coatings on intraosseous implants. At the same time, the need for further im-
provement of coatings, which provides for ensuring high mechanical strength, and
at the same time - the creation of an adjustable porous structure with bioactive
properties, has become urgent. In studies, special attention is paid to the possibility
of bone tissue to grow freely into the porous structure of implants [14]. Currently,
the following ideas about the structure of the surface of implants, which is most
favorable for their integration with bone tissue, have been formed in the scientific
literature:
– the pore size should be 50 – 500 microns;
– the porous structure should maximally promote the supply of nutrients and
oxygen involved in the construction of new bone tissue;
– the porous layer should have an intermediate modulus of elasticity between
the moduli of elasticity of the bone and the metal implant;
– high strength of the porous structure itself;
– bioactivity of the coating.
2. Methods for monitoring the results of the application of plasma evapo-
ration for solving problems related to medicine. A number of works published
in scientific literature demonstrate the level of research methods that are used to
control the results obtained. This applies to both in vivo and in vitro experiments.
In particular, the bone cells of an adult, isolated from the jaw bone by biopsy, were
grown in culture on cover glasses, on polished surfaces, and also on plasma-coated
surfaces of titanium, HA [16]. The content of various metabolic fractions was
compared after 2 and 5 days of culture. Both types of titanium surfaces significant-
ly increased the size of the populations of the caudate and caudate precursors in
vitro. But, the plasma-evaporated titanium surface showed between 2 and 5 days a
116
greater increase in the number of bone cells, markedly increasing their prolifera-
tive activity and alkaline phosphatase activity.
The structure and phase composition of hydroxyl-apatite coatings and their
changes occurring during plasma evaporation on titanium substrates with an in-
crease in coating thickness and outflow regimes of plasma jets were studied [17].
Data on the fine structure of plasma-evaporated hydroxyapatite coatings were ob-
tained by electron microscopy on the lumen and X-ray structural analysis. Re-
search results indicate the complexity of the evaporated coatings and the possibil-
ity of obtaining coatings with a given crystal structure, which should be considered
when predicting the performance of coatings on implants in orthopedics and den-
tistry.
The presence and distribution of the amorphous phase is a key factor in ensur-
ing the functioning and good bone adhesion of plasma-evaporated HA coatings
[18]. The microanalysis of the coatings was carried out using a scanning cathode-
fluorescent microscope. It was confirmed that the darker areas of polished trans-
verse cuts correspond to the amorphous phase. To detect two structurally different
sites in the sample, stronger cathode-luminescent emission from the amorphous
phase was used during the electron beam irradiation (compared to the crystalline
phase). Thanks to the choice of the emission peak corresponding to 450 nm, it be-
came possible to conduct raster scanning of the surface with an electron beam and
obtain a map of the amorphous phase of polished sections, the fracture surface and
the freshly obtained surface of the plasma-evaporated coating. Cathode-
luminescent microscopy, using the phenomenon of unequal light emission from the
amorphous phase of HA, allows to identify and map the component, which is the
amorphous phase in plasma-evaporated coatings.
The crystallinity and residual stresses at the interface between HA and titani-
um were investigated [19]. The traditional method used in laboratories is based on
the x-ray diffraction of HA samples with standard crystallinity of aluminum oxide.
Four methods were studied to determine the crystallinity of HA samples. Two of
them are based on X-ray diffraction, one on neutron diffraction, and one on infra-
red adsorption spectrometry. All four methods give results that are very different
from each other. The greatest accuracy was at x-ray and infrared methods.
The influence of thermochemical reactions on interactive processes in the bio-
system of a living organism's tissue — a bioactive coating — a bio-inert metal im-
plant is analyzed [20]. Body fluids contribute to increased adhesion of the bone
with a bioactive coating. However, corrosion may form on the interfaces. It was
experimentally shown that corrosion processes can prevent and simultaneously
increase the adhesion force between the bioactive HA coating applied by the plas-
ma evaporation method and the surface of the titanium alloy using an intermediate
glass coating. A biocompatible phosphate glass coating is applied to the titanium
substrate in vacuum at 9000°C. Then ceramic glass with HA content, powder, in
argon plasma is evaporated onto the glass. The adhesive force between the bone
and the implant was tested 4 months after the implant was placed in the rabbit's
thigh.
The chemical composition of the outermost layer of phosphorus-silicate glass,
which was applied to a titanium alloy substrate by plasma evaporation, was studied
[21]. In this case, X-ray photoelectron spectroscopy was used. Samples were im-
mersed in a potassium phosphate buffer solution, or in a solution of human albu-
min with phosphate buffer. The characteristics of phosphate-silicate glass were
117
compared with the characteristics of soda-calcium glass treated in the same way.
After keeping in buffer solution, the enriched Ca and P layer was formed only on
the surface of phosphorus-silicate glass. Human serum albumin is bonded to the
glasses of both species, while maintaining its native state. However, the protein
completely covered the surface of phosphate-silicate glass for 24 hours, with the
formation of a layer of a mixture of albumin, Ca and P. It took 4 days to fully cov-
er the surface of the sodium-calcium glass. Mouse fibroblasts, sown on phospho-
rus-silicate glass, were characterized by almost the same pattern of proliferation as
the control cells were grown. The growth of cells sown on soda-calcium glass was
less intense.
3. Trends for the development of plasma evaporation for solving prob-
lems related to medicine. Currently, third generation materials (polymers, artifi-
cial plastics) are most commonly used for plasma evaporation [22]. Nevertheless,
innovative research is trying to initiate development for fourth generation bio-
materials [23]. The fourth generation of biomaterials is based on the integration of
electronic systems with the human body, with the aim of providing diagnostics and
mastering therapeutic tools for basic research and their clinical use. The function-
ality of such biomaterial systems significantly expands the capabilities of this area
of medicine and technology. They include the use of radio channels, the study of
bioelectric reactions of tissue regeneration, as well as the monitoring of cellular
responses in order to establish a response by feedback from the patient’s tissues
through bioelectric signals [24]. This will open up a number of opportunities for
plasma evaporation.
Conclusions. During plasma evaporation of prostheses, a composite coating
consisting of a bioactive ceramic coating and a capillary-porous titanium coating
has the most favorable macro- and microstructure and bioactive properties. This
has a positive effect on the fixation of bone tissue on the implant surface [12]. The
presence of bioactive properties of these coatings, named «osteoinductive» and
«osteoconductive», determines the stability and strength of the «implant-bone tis-
sue» interface.
The system «implant - bone tissue» is a complex version of a composite mate-
rial, the structure of which and, above all, the interface «implant - bone system» is
finally formed in a living organism. The volume limit allows to reduce the stress
concentration resulting from a significant difference in the elastic moduli of titani-
um and bone tissue. The joint boundary of the «implant-bone tissue» section of the
composite is formed after the implant is installed in the bone system.
The percentage of filling the porous layer on the implant surface with new
bone tissue and the strength of this bone tissue almost completely determine the
efficiency of transferring the load from the implant to the bone tissue, the mechan-
ical strength of such a composite material, and the durability of the implant. This
provision is a criterion for monitoring the results in the further improvement of
plasma evaporation technology when using it for medical purposes.
1. Hench L .L. Bioactive materials: The potential for tissue regeneration. J. Biomat. Mater. Res. 1998. V. 41.
No. 4. Pр. 511–518. https://doi.org/10.1002/(SICI)1097-4636(19980915)41:4<511::AID-JBM1>3.0.CO;2-F
2. Kitsugi Т. Bone–bonding behavior of plasma sprayed coatings of bioglass RAW–glass ceramic, and tricalcium
phosphate in titanium alloy. J. Biomed. Mater. Res. 1996. V. 30. No. 2. P. 261. https://doi.org/10.1002/(SICI)1097-
4636(199602)30:2<261::AID-JBM17>3.0.CO;2-P
118
3. Schrooten J., Van Oosterwyck H., Sloten J. Vander, Helsen J. A. Adhesion of new bioactive glass coating.
J. Biomed. Mater. Res. 1999. V. 44. No. 3. Pp. 243–252. https://doi.org/10.1002/(SICI)1097-
4636(19990305)44:3<243::AID-JBM2>3.0.CO;2-O
4. Klein C. P. Calcium phosphate sprayed coatings and their stability: An in vivo study. J. Biomed. Mater. Res.
1994. V. 28. No. 8. Pp. 909–917. https://doi.org/10.1002/jbm.820280810
5. Khor K. A., Cheang P. Effect of powder feedstock on thermal sprayed hydroxyapatite coatings. Proc. 7th Nat.
Thermal. Spray Conf. 20–24 June 1994, Boston, Massachusetts. 1994. Pp. 147–152.
6. Gomez-Vega L. M., Saiz E. Glass-based coatings for titanium implant alloys. J. Biomed. Mater. Res. 1999.
V. 46. No. 4. Pp. 549–559. https://doi.org/10.1002/(SICI)1097-4636(19990915)46:4<549::AID-JBM13>3.0.CO;2-M
7. Weng J. Integrity and thermal decomposition of apatits in coatings influenced by underlying titanium during plasma
spraying and post-heat treatment. J. Biomed. Mater. Res. 1996. V.30. No. 5. P. 5. https://doi.org/10.1002/(SICI)1097-
4636(199601)30:1<5::AID-JBM2>3.3.CO;2-B
8. Loesberg W. A., Walboomers X. F., Van Loon J. J., Jansen J. A. The effect of combined cyclic mechanical
stretching and microgrooved surface topography on the behavior of fibroblasts. J. Biomed. Mater. Res. 2005.
V. 75A. Pp. 723–732. https://doi.org/10.1002/jbm.a.30480
9. Harris H. Overview of problems surrounding the plasma spraying of hydroxyapatite coatings (Invited Paper).
Thermal Spray Research and Applications Proceedings the Third National Thermal Spray Conference, Long
Beach, CA, USA, 20–25 May 1990. 1990. Pp. 419-423.
10. Borsari V., Giavaresi G., Fini M., Torricelli P., Salito A., Chiesa R., Chiusoli L., Volpert A., Rimondini L.,
Giardino R. Physical characterization of different roughness titanium surfaces, with and without
hydroxyapatite coating, and their effect on human osteoblast-like cells. J. Biomed. Mater. Res. Part B: Appl.
Biomater. 2005. V. 75B. Pp. 359–368. https://doi.org/10.1002/jbm.b.30313
11. Tong W. Effect of particle size on molten states of starting powder and degradation of relevant plasma-strayed
hydroxyapatite coatings. Biomaterials. 1996. V. 17. No. 15. Pp. 1507–1514. https://doi.org/10.1016/0142-
9612(96)89775-4
12. Kalita V. I., Komlev D. I. Plasma Coatings with Nanocrystall and Amorphous Structure (in Russian).
Moscow: Lider M, 2008. 388 pp.
13. Strogonova E. E., Mikhaylichenko N. Yu., Sarkisov P. D., Kalita V. I. Potassium phosphate bioactive glass
ceramic coatings (in Russian). Proc. XIXth All-Russian Conference on Temperature-Resistant Functional
Coatings. St. Petersburg, Russia, 15–17 April 2003. St. Petersburg: Yanus, 2003. Pp. 127–131.
14. Hing K. A., Best S. M., Tanner K. E., Bonfield W., Revell P. A. Mediation of bone ingrowth in porous
hydroxyapatite bone graft substitutes. J. Biomed. Mater. Res. 2004. V. 68A. Pp. 187 – 200.
https://doi.org/10.1002/jbm.a.10050
15. Sevast'yanov V .I. New generation of materials for medicine (in Russian). Perspekt. Mater. 1997. No. 4. Pp.
56–60.
16. Santis D. Adult human bone cells from jaw bones cultured on plasma-sprayed or polished surfaces of titanium
or hydroxylapatite discs. J. Mater. Sci. Mater. Med. 1996. V. 7. No. 1. Pp. 21–28. https://doi.org/10.1007/BF00121185
17. Klimenov V. A. et al. Structure and phase composition of plasma-sprayed apatite coatings on implants (in
Russian). Perspekt. Mater. 1997. No. 5. Pp. 44–49.
18. Gross. K. A. Identification and mapping of the amorphous phase in plasma-sprayed hydroxyapatite coatings
using scanning cathodoluminescence microscopy. J. Mater. Sci. Mater. Med. 1998. V. 9. No. 12. Pp. 797–802.
https://doi.org/10.1023/A:1008983809316
19. Girardin E. Characterization techniques for hydroxyapatite deposited by plasma spray on hip prosthesis.
Mater. & Manuf. Processes.1998. V. 13. No. 4. Pp. 581–588. https://doi.org/10.1080/10426919808935278
20. Cimdins R. Gemeinschaftssymposium der Klinik und Poliklinik fur Mund-,Kiefer-,und Plastische
Gesichtschirurgie der Lettischen Medizinischen Fakultat der Universitat Rostock, Riga, 1995 und Rostock,
1998. Rostock. Med. Beitr. 1999. No. 8. Pp. 281–285.
21. Polzonetti G. Surface reactions of a plasma-sprayed CaO-P[2]O[5]-SiO[2]-based glass with albumin,
fibroblasts and granulocytes studied by XPS, fluorescence and chemiluminescence. Biomaterials. 2000. V. 21.
No. 15. Pp. 1531–1539. https://doi.org/10.1016/S0142-9612(00)00025-9
22. Cizek J., Matejicek J. Medicine meets thermal spray technology: A review of patents. J. Therm. Spray Tech.
2018. V. 27. Pp. 1251–1279. https://doi.org/10.1007/s11666-018-0798-8
23. Ning C., Zhou L., Tan G. Fourth-generation biomedical materials. Mater. Today. 2016. V. 19(1). Pp. 2–3.
https://doi.org/10.1016/j.mattod.2015.11.005
24. Heimann R. B. Plasma-sprayed hydroxylapatite-based coatings: chemical, mechanical, icrostructural, and
biomedical properties. J. Therm. Spray Technol. 2016. V. 25. No. 5. Pp. 827–850. https://doi.org/10.1007/s11666-016-
0421-9
Received on March 14, 2019,
in final form on September 17, 2019
|