Структурне моделювання стійке до викидів у вхідних та залежних змінних

This paper describes advances in the algorithm development designed to solve a task of optimal polynomial model selection on multivariate data sets in presence of outliers in both explanatory and response variables. On one side novel algorithm, as its ancestor, is based on GMDH-type PNN, which gives...

Full description

Saved in:
Bibliographic Details
Date:2010
Main Authors: Шапошник, В., Вілла, А.Е.П., Аксенова, Т.
Format: Article
Language:Ukrainian
Published: Міжнародний науково-навчальний центр інформаційних технологій і систем НАН та МОН України 2010
Online Access:http://dspace.nbuv.gov.ua/handle/123456789/17422
Tags: Add Tag
No Tags, Be the first to tag this record!
Journal Title:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Cite this:Структурне моделювання стійке до викидів у вхідних та залежних змінних / В. Шапошник, А.Е.П. Вілла, Т. Аксенова // Індуктивне моделювання складних систем: Зб. наук. пр. — К.: МННЦ ІТС НАН та МОН України, 2010. — Вип. 2. — С. 257-271. — Бібліогр.: 18 назв. — укр.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Description
Summary:This paper describes advances in the algorithm development designed to solve a task of optimal polynomial model selection on multivariate data sets in presence of outliers in both explanatory and response variables. On one side novel algorithm, as its ancestor, is based on GMDH-type PNN, which gives him an universal model structure identification abilities thanks to the evolving adaptively synthesized bounded network. And on the other side the algorithm is enhanced with GM-estimator used for parameter search which allows him achieve robustness to outliers in both explanatory and response variables. Enhanced RPNN demonstrated robustness to outliers in both explanatory and response variables and good accuracy of the automatic structure syntheses.