On boundary-value problems for generalized analytic and harmonic functions

The present paper is a natural continuation of our last articles on the Riemann, Hilbert, Dirichlet, Poincaré, and, in particular, Neumann boundary-value problems for quasiconformal, analytic, harmonic functions and the so-called A-harmonic functions with arbitrary boundary data that are measurabl...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Datum:2020
Hauptverfasser: Gutlyanskiĭ, V.Ya., Nesmelova, O.V., Ryazanov, V.I., Yefimushkin, A.S.
Format: Artikel
Sprache:English
Veröffentlicht: Видавничий дім "Академперіодика" НАН України 2020
Schriftenreihe:Доповіді НАН України
Schlagworte:
Online Zugang:http://dspace.nbuv.gov.ua/handle/123456789/174268
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:On boundary-value problems for generalized analytic and harmonic functions / V.Ya. Gutlyanskiĭ, O.V. Nesmelova, V.I. Ryazanov, A.S. Yefimushkin // Доповіді Національної академії наук України. — 2020. — № 12. — С. 11-18. — Бібліогр.: 12 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-174268
record_format dspace
fulltext
spelling irk-123456789-1742682021-01-12T01:26:07Z On boundary-value problems for generalized analytic and harmonic functions Gutlyanskiĭ, V.Ya. Nesmelova, O.V. Ryazanov, V.I. Yefimushkin, A.S. Математика The present paper is a natural continuation of our last articles on the Riemann, Hilbert, Dirichlet, Poincaré, and, in particular, Neumann boundary-value problems for quasiconformal, analytic, harmonic functions and the so-called A-harmonic functions with arbitrary boundary data that are measurable with respect to the logarithmic capacity. Here, we extend the corresponding results to generalized analytic functions h : D→C with sources g:∂žh = g∈Lᵖ, p > 2, and to generalized harmonic functions U with sources G : ΔU=G∈Lᵖ, p > 2. Our approach is based on the geometric (functional-theoretic) interpretation of boundary values in comparison with the classical operator approach in PDE. Here, we will establish the corresponding existence theorems for the Poincaré problem on directional derivatives and, in particular, for the Neumann problem to the Poisson equations ΔU=G with arbitrary boundary data that are measurable with respect to the logarithmic capacity. A few mixed boundary-value problems are considered as well. These results can be also applied to semilinear equations of mathematical physics in anisotropic and inhomogeneous media. Робота є продовженням досліджень крайових задач Рімана, Гільберта, Діріхле, Пуанкаре і, зокрема, Неймана, для квазіконформних, аналітичних, гармонічних і так званих A-гармонічних функцій із довільними граничними даними, які є вимірюваними відносно логарифмічної ємності. Тут відповідні результати поширено на узагальнені аналітичні функції h : D→C з джерелом : g:∂žh = g∈Lᵖ, p > 2 , і на узагальнені гармонічні функції U з джерелом G ΔU=G∈Lᵖ, p > 2. Даний підхід заснований на геометричній (теоретико-функціональній) інтерпретації крайових задач у порівнянні з класичним операторним під ходом у теорії РЧП. Встановлені відповідні теореми існування для задачі Пуанкаре для похідної за напрямком і, зокрема, для задачі Неймана для рівняння Пуассона ΔU=G з довільними граничними даним и, що є вимірюваними відносно логарифмічної ємності. Також розглянуто декілька змішаних граничних задач. Ці результати можуть буть також застосовані до напівлінійних рівнянь математичної фізики в анізотропних та неоднорідних середовищах. 2020 Article On boundary-value problems for generalized analytic and harmonic functions / V.Ya. Gutlyanskiĭ, O.V. Nesmelova, V.I. Ryazanov, A.S. Yefimushkin // Доповіді Національної академії наук України. — 2020. — № 12. — С. 11-18. — Бібліогр.: 12 назв. — англ. 1025-6415 DOI: doi.org/10.15407/dopovidi2020.12.011 http://dspace.nbuv.gov.ua/handle/123456789/174268 517.5 en Доповіді НАН України Видавничий дім "Академперіодика" НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
topic Математика
Математика
spellingShingle Математика
Математика
Gutlyanskiĭ, V.Ya.
Nesmelova, O.V.
Ryazanov, V.I.
Yefimushkin, A.S.
On boundary-value problems for generalized analytic and harmonic functions
Доповіді НАН України
description The present paper is a natural continuation of our last articles on the Riemann, Hilbert, Dirichlet, Poincaré, and, in particular, Neumann boundary-value problems for quasiconformal, analytic, harmonic functions and the so-called A-harmonic functions with arbitrary boundary data that are measurable with respect to the logarithmic capacity. Here, we extend the corresponding results to generalized analytic functions h : D→C with sources g:∂žh = g∈Lᵖ, p > 2, and to generalized harmonic functions U with sources G : ΔU=G∈Lᵖ, p > 2. Our approach is based on the geometric (functional-theoretic) interpretation of boundary values in comparison with the classical operator approach in PDE. Here, we will establish the corresponding existence theorems for the Poincaré problem on directional derivatives and, in particular, for the Neumann problem to the Poisson equations ΔU=G with arbitrary boundary data that are measurable with respect to the logarithmic capacity. A few mixed boundary-value problems are considered as well. These results can be also applied to semilinear equations of mathematical physics in anisotropic and inhomogeneous media.
format Article
author Gutlyanskiĭ, V.Ya.
Nesmelova, O.V.
Ryazanov, V.I.
Yefimushkin, A.S.
author_facet Gutlyanskiĭ, V.Ya.
Nesmelova, O.V.
Ryazanov, V.I.
Yefimushkin, A.S.
author_sort Gutlyanskiĭ, V.Ya.
title On boundary-value problems for generalized analytic and harmonic functions
title_short On boundary-value problems for generalized analytic and harmonic functions
title_full On boundary-value problems for generalized analytic and harmonic functions
title_fullStr On boundary-value problems for generalized analytic and harmonic functions
title_full_unstemmed On boundary-value problems for generalized analytic and harmonic functions
title_sort on boundary-value problems for generalized analytic and harmonic functions
publisher Видавничий дім "Академперіодика" НАН України
publishDate 2020
topic_facet Математика
url http://dspace.nbuv.gov.ua/handle/123456789/174268
citation_txt On boundary-value problems for generalized analytic and harmonic functions / V.Ya. Gutlyanskiĭ, O.V. Nesmelova, V.I. Ryazanov, A.S. Yefimushkin // Доповіді Національної академії наук України. — 2020. — № 12. — С. 11-18. — Бібліогр.: 12 назв. — англ.
series Доповіді НАН України
work_keys_str_mv AT gutlyanskiivya onboundaryvalueproblemsforgeneralizedanalyticandharmonicfunctions
AT nesmelovaov onboundaryvalueproblemsforgeneralizedanalyticandharmonicfunctions
AT ryazanovvi onboundaryvalueproblemsforgeneralizedanalyticandharmonicfunctions
AT yefimushkinas onboundaryvalueproblemsforgeneralizedanalyticandharmonicfunctions
first_indexed 2025-07-15T11:12:29Z
last_indexed 2025-07-15T11:12:29Z
_version_ 1837711177079062528