ICRF heating of hydrogen plasmas with two mode conversion layers

ICRF mode conversion heating regime is widely used in present-day tokamaks. The theoretically predicted mode conversion enhancement due to the constructive interference of the fast wave reflected from the evanescence layer with a wave reflected from the high-field side cutoff was first experimentall...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2010
Автори: Kazakov, Ye.O., Van Eester, D., Lerche, E., Pavlenko, I.V., Girka, I.O., Weyssow, B.
Формат: Стаття
Мова:English
Опубліковано: Національний науковий центр «Харківський фізико-технічний інститут» НАН України 2010
Теми:
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/17452
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:ICRF heating of hydrogen plasmas with two mode conversion layers / Ye.O. Kazakov, D. Van Eester, E. Lerche, I.V. Pavlenko, I.O. Girka, B. Weyssow // Вопросы атомной науки и техники. — 2010. — № 6. — С. 37-39. — Бібліогр.: 9 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-17452
record_format dspace
spelling irk-123456789-174522011-02-27T12:06:47Z ICRF heating of hydrogen plasmas with two mode conversion layers Kazakov, Ye.O. Van Eester, D. Lerche, E. Pavlenko, I.V. Girka, I.O. Weyssow, B. Методы создания и нагрева плазмы ICRF mode conversion heating regime is widely used in present-day tokamaks. The theoretically predicted mode conversion enhancement due to the constructive interference of the fast wave reflected from the evanescence layer with a wave reflected from the high-field side cutoff was first experimentally identified in JET in (3He)D experiments. This effect was recently tested in (3He)H plasmas, which is one of the ICRF heating scenarios considered for the non-activated phase of ITER operation. Due to the presence of the intrinsic D-like impurities in JET (e.g., C6+, 4He) the supplementary conversion layer was produced in the plasma that defined the interference conditions. The different behavior of the conversion efficiency observed at various 3He concentrations is analyzed in the paper on the basis of the theory of the fast wave mode conversion in plasmas with two evanescence layers. Высокочастотный нагрев плазмы в режиме конверсии мод широко используется в современных токамаках. Теоретически предсказанное увеличение эффективности конверсии вследствие интерференции быстрой волны, отраженной от области непрозрачности, с волной, отраженной от отсечки со стороны сильного магнитного поля, было впервые экспериментально подтверждено в (3He)D-экспериментах на токамаке JET. Данный эффект изучался в (3He)H-плазме, которая рассматривается как один из сценариев ВЧ-нагрева во время начальной стадии работы ITER. Вследствие присутствия в плазме JET дейтериеподобных примесей (C6+, 4He) образовывалась дополнительная область непрозрачности, которая определяла условия интерференции волн. Различное поведение коэффициента конверсии, наблюдаемое при разных значениях концентрации ионов 3He, анализируется в работе с помощью теории конверсии быстрых волн в плазме с двумя областями непрозрачности. Високочастотне нагрівання плазми в режимі конверсії мод широко застосовується в сучасних токамаках. Теоретично передбачене збільшення ефективності конверсії внаслідок інтерференції швидкої хвилі, що відбита від шару непрозорості, з хвилею, що відбита від відсічки з боку сильного магнітного поля, було вперше експериментально підтверджено в (3He)D-експериментах на токамаці JET. Цей ефект нещодавно апробовано в (3He)H-плазмі, яка розглядається як один із сценаріїв ВЧ-нагрівання на початковій стадії роботи ITER. Внаслідок присутності в плазмі JET дейтерієподібних домішок (C6+, 4He) утворювався додатковий шар непрозорості, що визначав умови інтерференції хвиль. Різна поведінка коефіцієнту конверсії, що спостерігалася за різної концентрації іонів 3He, аналізується в роботі на основі теорії конверсії швидких хвиль в плазмі з двома шарами непрозорості. 2010 Article ICRF heating of hydrogen plasmas with two mode conversion layers / Ye.O. Kazakov, D. Van Eester, E. Lerche, I.V. Pavlenko, I.O. Girka, B. Weyssow // Вопросы атомной науки и техники. — 2010. — № 6. — С. 37-39. — Бібліогр.: 9 назв. — англ. 1562-6016 http://dspace.nbuv.gov.ua/handle/123456789/17452 en Національний науковий центр «Харківський фізико-технічний інститут» НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
topic Методы создания и нагрева плазмы
Методы создания и нагрева плазмы
spellingShingle Методы создания и нагрева плазмы
Методы создания и нагрева плазмы
Kazakov, Ye.O.
Van Eester, D.
Lerche, E.
Pavlenko, I.V.
Girka, I.O.
Weyssow, B.
ICRF heating of hydrogen plasmas with two mode conversion layers
description ICRF mode conversion heating regime is widely used in present-day tokamaks. The theoretically predicted mode conversion enhancement due to the constructive interference of the fast wave reflected from the evanescence layer with a wave reflected from the high-field side cutoff was first experimentally identified in JET in (3He)D experiments. This effect was recently tested in (3He)H plasmas, which is one of the ICRF heating scenarios considered for the non-activated phase of ITER operation. Due to the presence of the intrinsic D-like impurities in JET (e.g., C6+, 4He) the supplementary conversion layer was produced in the plasma that defined the interference conditions. The different behavior of the conversion efficiency observed at various 3He concentrations is analyzed in the paper on the basis of the theory of the fast wave mode conversion in plasmas with two evanescence layers.
format Article
author Kazakov, Ye.O.
Van Eester, D.
Lerche, E.
Pavlenko, I.V.
Girka, I.O.
Weyssow, B.
author_facet Kazakov, Ye.O.
Van Eester, D.
Lerche, E.
Pavlenko, I.V.
Girka, I.O.
Weyssow, B.
author_sort Kazakov, Ye.O.
title ICRF heating of hydrogen plasmas with two mode conversion layers
title_short ICRF heating of hydrogen plasmas with two mode conversion layers
title_full ICRF heating of hydrogen plasmas with two mode conversion layers
title_fullStr ICRF heating of hydrogen plasmas with two mode conversion layers
title_full_unstemmed ICRF heating of hydrogen plasmas with two mode conversion layers
title_sort icrf heating of hydrogen plasmas with two mode conversion layers
publisher Національний науковий центр «Харківський фізико-технічний інститут» НАН України
publishDate 2010
topic_facet Методы создания и нагрева плазмы
url http://dspace.nbuv.gov.ua/handle/123456789/17452
citation_txt ICRF heating of hydrogen plasmas with two mode conversion layers / Ye.O. Kazakov, D. Van Eester, E. Lerche, I.V. Pavlenko, I.O. Girka, B. Weyssow // Вопросы атомной науки и техники. — 2010. — № 6. — С. 37-39. — Бібліогр.: 9 назв. — англ.
work_keys_str_mv AT kazakovyeo icrfheatingofhydrogenplasmaswithtwomodeconversionlayers
AT vaneesterd icrfheatingofhydrogenplasmaswithtwomodeconversionlayers
AT lerchee icrfheatingofhydrogenplasmaswithtwomodeconversionlayers
AT pavlenkoiv icrfheatingofhydrogenplasmaswithtwomodeconversionlayers
AT girkaio icrfheatingofhydrogenplasmaswithtwomodeconversionlayers
AT weyssowb icrfheatingofhydrogenplasmaswithtwomodeconversionlayers
first_indexed 2025-07-02T18:40:29Z
last_indexed 2025-07-02T18:40:29Z
_version_ 1836561601224769536
fulltext ICRF HEATING OF HYDROGEN PLASMAS WITH TWO MODE CONVERSION LAYERS Ye.O. Kazakov1, D. Van Eester2, E. Lerche2, I.V. Pavlenko1, I.O. Girka1, B. Weyssow3,4 and JET EFDA Contributors* JET-EFDA Culham Science Centre, Abingdon, OX14 3DB, UK; 1 V.N. Karazin Kharkiv National University, Kharkiv, Ukraine; 2 Laboratory for Plasma Physics, Association EURATOM-Belgian State, Trilateral Euregio Cluster Partner, Royal Military Academy, B-1000, Brussels, Belgium; 3 EFDA-CSU Garching, Boltzmannstr. 2, D-85748, Garching, Germany; 4 Université Libre de Bruxelles, Association EURATOM-Belgian State, Campus Plaine, CP 231, B-1050 Brussels, Belgium ICRF mode conversion heating regime is widely used in present-day tokamaks. The theoretically predicted mode conversion enhancement due to the constructive interference of the fast wave reflected from the evanescence layer with a wave reflected from the high-field side cutoff was first experimentally identified in JET in (3He)D experiments. This effect was recently tested in (3He)H plasmas, which is one of the ICRF heating scenarios considered for the non- activated phase of ITER operation. Due to the presence of the intrinsic D-like impurities in JET (e.g., C6+, 4He) the supplementary conversion layer was produced in the plasma that defined the interference conditions. The different behavior of the conversion efficiency observed at various 3He concentrations is analyzed in the paper on the basis of the theory of the fast wave mode conversion in plasmas with two evanescence layers. PACS: 52.55.Fa, 52.50.Qt, 52.25.Os 1. INTRODUCTION ICRF mode conversion regime is being actively studied within the last years [1]. The attention paid to this scenario is caused by a number of important applications it has beyond plasma heating. Mode conversion has become a standard tool to do the transport analysis [2], it is used to drive plasma rotation [3], to generate non- inductive current drive, to pump-out impurities, to measure the ion species mix, etc. The principle of this scheme consists in the following. An ICRF antenna located at the low field side (LFS) of the tokamak launches the fast wave (FW) which propagates to the plasma center. At the ion-ion hybrid (IIH) resonance the FW is partially converted to short-wavelength mode which is commonly effectively damped on the electrons. The optimization of this heating scheme relies on the achievement of the proper conversion conditions. The Budden theory predicts that maximum 25% of the FW energy can be converted to short-wavelength mode when the FW tunnels through an isolated evanescence layer. The interference effect described by V. Fuchs et al. [4] allows to significantly enhance the conversion efficiency. The conversion enhancement is caused by the additional reflection of the FW transmitted through the evanescence layer from the high-field side cutoff. The optimal conversion conditions are achieved when the reflected waves have nearly equal amplitudes and the opposite phases. Within this model the conversion coefficient can reach the value of 100%. The first experimental evidence of this effect was shown in JET for (3He)D plasmas [5]. The experimental data of the power absorbed by electrons as a function of minority 3He concentration, X[3He] was found to be in fair accordance with the theoretical analysis and numerical modeling. It was shown that the electron absorption efficiency was an oscillatory function of X[3He]. Recently, a series of experiments at JET was performed to test this idea in (3He)H plasma [6]. Unlike the (3He)D scenario, the latter is an inverted one, i.e. a scenario with a ‘heavy’ minority, (Z/A)min<(Z/A)maj. For the inverted scenario the evanescence layer is located between the LFS antenna and the minority cyclotron resonance. As the minority concentration is increased, the conversion layer shifts towards the LFS in contrast to the HFS layer shift for the regular scenarios. Moreover, as shown in the past experiments [7], the inverted (3He)H scenario requires much lower X[3He] to reach the mode conversion regime than the regular (3He)D scenario. The aim of the (3He)H heating experiments performed earlier at JET [7, 8] was to test the potential of this heating scenario for the non-activated phase of ITER operation. At this early ITER experimental stage predominantly hydrogen plasma will be used to minimize the activation of the tokamak components. Before the shutdown of JET in 2009 most of the inner wall was made of carbon tiles. It resulted in the unavoidable presence of carbon in the plasma at a fairly high level enough to prevent the minority heating of deuterium in hydrogen plasmas [7, 8]. In addition, deuterium (as the most commonly used gas in JET) and 4He (since (3He)H heating experiments were performed after a 4He campaign) ions were present in all discharges due to the recycling. Thus, the (3He)H plasma was unavoidably contaminated with the D-like species, which from RF point of view acted as a single species with Z/A=1/2. The presence of these ions led to the production of a second conversion layer in the plasma. This resulted in a more complicated picture of the mode conversion physics than for the usual case of a single resonance. * See the Appendix of F. Romanelli et al., Proceedings of the 22nd IAEA Fusion Energy Conference 2008, Geneva, Switzerland PROBLEMS OF ATOMIC SCIENCE AND TECHNOLOGY. 2010. № 6. 37 Series: Plasma Physics (16), p. 37-39. 2. MULTIPLE MODE CONVERSION LAYERS PHYSICS The mode conversion coefficient in plasmas with two evanescence layers is found to be of the form [9]: (1) where are the transmission coefficients through the corresponding conversion layers. The constructive/ destructive role of the interference effects in mode conversion is determined by the phase difference (2) The largest contribution to in (2) is given by the term , which is defined by the distance between the conversion layers. The location and transparency properties of each of the conversion layers strongly depend on the concentrations of both minority species. Fig. 1 shows the spatial dependence of the FW wavenumber, as a function of X[3He] and X[D]. It is clearly seen that with the increase of the minority concentration, be it X[3He] or X[D], the corresponding conversion layer moves towards the LFS as for the present inverted scenario. But the mutual effect on the opposite conversion layer is inverse for 3He and D ions. The X[3He] increase leads to a shift of the D layer towards the HFS and to the decrease of its width, while the increase of X[D] results in the LFS shift of the 3He layer. It also alters the width of the 3He layer, which results in the significant reduction of the transition 3He concentration at which the mode conversion regime is observed [7, 9]. The (3He)H experiments referred to were performed at the magnetic field B0 = 3.4…3.5 T and with the antenna frequency f =32.5 MHz. This positioned the 3He cyclotron 38 Fig. 1. FW dispersion as a function of X[3He] and X[D], B resonance layer ~20 cm out of the plasma center to the LFS, the D cyclotron resonance was located at the HFS at R ≈ 2.4 m (Fig. 2). As discussed, two mode conversion layers were present in the plasma: one layer was associated with 3He ions, and another – with D-like ions. Fig. 2. Tokamak poloidal cross-section with the locations of the 3He and D cyclotron resonance and mode conversion layers, B0=3.46 T, f=32.5 MHz Since the position of the conversion layers depends on the minority concentration it is important to implement the real time control (RTC) of the 3He concentration. RTC scheme relies on the generalized Mantsinen law. It utilizes the definition of Zeff and links relative divertor light intensities of species to the relative species concentrations [5]. It was found that the experimentally determined locations of the maxima of electron absorption (determined from the analysis of the temperature response to the RF power modulation) did not coincide with the locations of the conversion layers calculated from the dispersion study using the RTC data for X[3He], the latter being representative for the divertor region and not necessarily for the core. A minimization procedure was implemented to establish the relation between the divertor and core 3He concentrations. It turned out that a simple multiplicative factor of 1.6 allows to reconcile experimental and theoretical predictions. а For XRTC[3He]<4% there are two conversion layers in the plasma. The conversion coefficient is defined by the formulas (1) and (2). ICRF heating efficiency has an oscillatory Fuchs-like dependence on X[3He] with one clear maximum (Fig. 3). In the range 4%<XRTC[3He]<6.5% the 3He conversion layer approaches the plasma edge. This regime is characterized by a poor antenna-wave coupling. Further increase of X[3He] moves the 3He conversion layer out of the plasma, and only a single D conversion layer remains in the plasma. In such conditions, a change of X[3He] does not have such a pronounced effect on the phase difference (determined now by the distance between the D conversion layer and the high-field side R-cutoff) for smaller 3He concentrations. The response of the heating efficiency to the change of X[3He] is rather flat in this regime, which is typical of the triplet-model theory [4]. Within this model the conversion coefficient is given by . – the transmission coefficient through the D layer – is lower than in the two b B0=3.2 T, f=33 MHz conversion layers regime due to higher 3He concentration, which makes D conversion layer to be a semi-transparent. The described conversion regimes have different sensitivity not only to the plasma composition, but also to the toroidal wavenumber, ntor. Since the location of the high-field side cutoff depends critically on ntor, the toroidal wavenumber dependence of the conversion coefficient is more pronounced in the second regime. Numerical simulations with the 1D full-wave code confirmed the presence of two mode conversion regimes with the different behavior to the variation of plasma parameters [6]. Fig. 3. ICRF heating efficiency as a function of 3He concentration, XRTC[3He] CONCLUSIONS Recent (3He)H heating experiments at the JET tokamak confirmed the essential role of the intrinsic D-like species in the ICRF mode conversion scenario. The presence of such ions leads to the generation of a supplementary conversion layer in the plasma, which for small 3He concentrations defines the interference pattern in the plasma. For large X[3He] only a single conversion layer associated with D ions is present in the plasma. The difference in the mode conversion coefficient behavior to the various experimental parameters observed in these regimes can be qualitatively explained by the Fuchs theory and its two mode conversion layers extension. ACKNOWLEDGEMENTS This work, supported by the European Communities under the contract of the Association between EURATOM and the Belgian State, was carried out within the framework of the European Fusion Development Agreement. The views and opinions expressed herein do not necessarily reflect those of the European Commission. The work of Ye.O. Kazakov was partly supported by the Erasmus Mundus Visiting Scientist Scholarship. REFERENCES 1. A.V. Longinov and K.N. Stepanov. High-Frequency Plasma Heating / Ed. A.G. Litvak. New York: “American Institute of Physics”, 1992, p. 93-238. 2. D. Van Eester, E. Lerche, P. Mantica, et al. // AIP Conf. Proc. 2007, v. 933, p. 63-66. 3. Y. Lin, J.E. Rice, S.J. Wukitch, et al. // Physics of Plasmas. 2009, v. 16, N 5, p. 056102. 4. V. Fuchs, A.K. Ram, S.D. Schultz, et al. // Physics of Plasmas. 1995, v. 2, N 5, p. 1637-1647. 5. D. Van Eester, E. Lerche, Y. Andrew, et al. // Plasma Physics and Controlled Fusion. 2009, v. 51, N 4, p.044007. 6. D. Van Eester, E. Lerche, T. Johnson, et al. Mode conversion heating in JET plasmas with multiple mode conversion layers // Proc. 37th EPS Conference on Plasma Physics (Dublin, Ireland, 2010), p. P5-163. 7. M.-L. Mayoral, P.U. Lamalle, D. Van Eester, et al. // Nuclear Fusion. 2006, v. 46, N 7, p. S550-S563. 8. P.U. Lamalle, M.J. Mantsinen, J.-M. Noterdaeme, et al. // Nuclear Fusion. 2006, v. 46, № 2, p. 391-400. 9. Ye.O. Kazakov, I.V. Pavlenko, D. Van Eester, et al. // Plasma Physics and Controlled Fusion. 2010, v. 52, N 11, p. 115006. Article received 13.09.2010 ВЫСОКОЧАСТОТНЫЙ НАГРЕВ ВОДОРОДНОЙ ПЛАЗМЫ С ДВУМЯ ОБЛАСТЯМИ КОНВЕРСИИ Е.О. Казаков, D. Van Eester, E. Lerche, И.В. Павленко, И.А. Гирка, B. Weyssow Высокочастотный нагрев плазмы в режиме конверсии мод широко используется в современных токамаках. Теоретически предсказанное увеличение эффективности конверсии вследствие интерференции быстрой волны, отраженной от области непрозрачности, с волной, отраженной от отсечки со стороны сильного магнитного поля, было впервые экспериментально подтверждено в (3He)D-экспериментах на токамаке JET. Данный эффект изучался в (3He)H-плазме, которая рассматривается как один из сценариев ВЧ-нагрева во время начальной стадии работы ITER. Вследствие присутствия в плазме JET дейтериеподобных примесей (C6+, 4He) образовывалась дополнительная область непрозрачности, которая определяла условия интерференции волн. Различное поведение коэффициента конверсии, наблюдаемое при разных значениях концентрации ионов 3He, анализируется в работе с помощью теории конверсии быстрых волн в плазме с двумя областями непрозрачности. ВИСОКОЧАСТОТНЕ НАГРІВАННЯ ВОДНЕВОЇ ПЛАЗМИ З ДВОМА ШАРАМИ НЕПРОЗОРОСТІ Є.О. Казаков, D. Van Eester, E. Lerche, І.В. Павленко, І.О. Гірка, B. Weyssow 39 Високочастотне нагрівання плазми в режимі конверсії мод широко застосовується в сучасних токамаках. Теоретично передбачене збільшення ефективності конверсії внаслідок інтерференції швидкої хвилі, що відбита від шару непрозорості, з хвилею, що відбита від відсічки з боку сильного магнітного поля, було вперше експериментально підтверджено в (3He)D-експериментах на токамаці JET. Цей ефект нещодавно апробовано в (3He)H-плазмі, яка розглядається як один із сценаріїв ВЧ-нагрівання на початковій стадії роботи ITER. Внаслідок присутності в плазмі JET дейтерієподібних домішок (C6+, 4He) утворювався додатковий шар непрозорості, що визначав умови інтерференції хвиль. Різна поведінка коефіцієнту конверсії, що спостерігалася за різної концентрації іонів 3He, аналізується в роботі на основі теорії конверсії швидких хвиль в плазмі з двома шарами непрозорості. REFERENCES