Study of plasma potential, its fluctuations and turbulence rotation in the T-10 tokamak

Plasma potential, its oscillations and turbulence rotation were studied on T-10 in a wide range of ohmic and ECRH regimes. The potential has negative sign over the whole plasma cross section. Broadband turbulence tends to rotate with E×B drift velocity. Rotation and potential evolve together with pl...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2010
Автори: Melnikov, A.V., Vershkov, V.A., Grashin, S.A., Eliseev, L.G., Lysenko, S.E., Mavrin, V.A., Merezhkin, V.G., Perfilov, S.V., Shelukhin, D.A., Shurygin, R.V., Krupnik, L.I., Komarov, A.D., Kozachek, A.S., Zhezhera, A.I.
Формат: Стаття
Мова:English
Опубліковано: Національний науковий центр «Харківський фізико-технічний інститут» НАН України 2010
Теми:
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/17453
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Study of plasma potential, its fluctuations and turbulence rotation in the T-10 tokamak / A.V. Melnikov, V.A. Vershkov, S.A. Grashin, L.G. Eliseev, S.E. Lysenko, V.A. Mavrin, V.G. Merezhkin, S.V. Perfilov, D.A. Shelukhin, R.V. Shurygin, L.I. Krupnik, A.D. Komarov, A.S. Kozachek, A.I. Zhezhera // Вопросы атомной науки и техники. — 2010. — № 6. — С. 40-42. — Бібліогр.: 6 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-17453
record_format dspace
spelling irk-123456789-174532011-02-27T12:06:48Z Study of plasma potential, its fluctuations and turbulence rotation in the T-10 tokamak Melnikov, A.V. Vershkov, V.A. Grashin, S.A. Eliseev, L.G. Lysenko, S.E. Mavrin, V.A. Merezhkin, V.G. Perfilov, S.V. Shelukhin, D.A. Shurygin, R.V. Krupnik, L.I. Komarov, A.D. Kozachek, A.S. Zhezhera, A.I. Методы создания и нагрева плазмы Plasma potential, its oscillations and turbulence rotation were studied on T-10 in a wide range of ohmic and ECRH regimes. The potential has negative sign over the whole plasma cross section. Broadband turbulence tends to rotate with E×B drift velocity. Rotation and potential evolve together with plasma confinement. Frequency of potential oscillations in the range of geodesic acoustic modes does not change with radius that disagrees with theoretical predictions. Потенциал плазмы, его колебания и вращение исследовались на токамаке T-10 в широком диапазоне омических и ЭЦР-режимов. Потенциал – отрицательный по всему сечению плазмы. Вращение турбулентности соответствует вращению за счет (E×B)-дрейфа. Вращение и потенциал чувствительны к изменениям удержания. Частота колебаний потенциала в диапазоне геодезических акустических мод не меняется по радиусу, что не соответствует локальной теории ГАМ. Потенціал плазми, його коливання та обертання було досліджено на токамаці Т-10 у широкому діапазоні омічних та ЕЦР-режимів. Потенціал має негативну величину по всьому перетину плазми. Обертання турбуленції відповідає обертанню за рахунок (E×B)-дрейфу. Обертання і потенціал чутливі до зміни утримання. Частота коливань потенціалу у діапазоні геодезичних акустичних мод ні змінюється в залежності від радіусу, що не відповідає локальній теорії ГАМ. 2010 Article Study of plasma potential, its fluctuations and turbulence rotation in the T-10 tokamak / A.V. Melnikov, V.A. Vershkov, S.A. Grashin, L.G. Eliseev, S.E. Lysenko, V.A. Mavrin, V.G. Merezhkin, S.V. Perfilov, D.A. Shelukhin, R.V. Shurygin, L.I. Krupnik, A.D. Komarov, A.S. Kozachek, A.I. Zhezhera // Вопросы атомной науки и техники. — 2010. — № 6. — С. 40-42. — Бібліогр.: 6 назв. — англ. 1562-6016 http://dspace.nbuv.gov.ua/handle/123456789/17453 en Національний науковий центр «Харківський фізико-технічний інститут» НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
topic Методы создания и нагрева плазмы
Методы создания и нагрева плазмы
spellingShingle Методы создания и нагрева плазмы
Методы создания и нагрева плазмы
Melnikov, A.V.
Vershkov, V.A.
Grashin, S.A.
Eliseev, L.G.
Lysenko, S.E.
Mavrin, V.A.
Merezhkin, V.G.
Perfilov, S.V.
Shelukhin, D.A.
Shurygin, R.V.
Krupnik, L.I.
Komarov, A.D.
Kozachek, A.S.
Zhezhera, A.I.
Study of plasma potential, its fluctuations and turbulence rotation in the T-10 tokamak
description Plasma potential, its oscillations and turbulence rotation were studied on T-10 in a wide range of ohmic and ECRH regimes. The potential has negative sign over the whole plasma cross section. Broadband turbulence tends to rotate with E×B drift velocity. Rotation and potential evolve together with plasma confinement. Frequency of potential oscillations in the range of geodesic acoustic modes does not change with radius that disagrees with theoretical predictions.
format Article
author Melnikov, A.V.
Vershkov, V.A.
Grashin, S.A.
Eliseev, L.G.
Lysenko, S.E.
Mavrin, V.A.
Merezhkin, V.G.
Perfilov, S.V.
Shelukhin, D.A.
Shurygin, R.V.
Krupnik, L.I.
Komarov, A.D.
Kozachek, A.S.
Zhezhera, A.I.
author_facet Melnikov, A.V.
Vershkov, V.A.
Grashin, S.A.
Eliseev, L.G.
Lysenko, S.E.
Mavrin, V.A.
Merezhkin, V.G.
Perfilov, S.V.
Shelukhin, D.A.
Shurygin, R.V.
Krupnik, L.I.
Komarov, A.D.
Kozachek, A.S.
Zhezhera, A.I.
author_sort Melnikov, A.V.
title Study of plasma potential, its fluctuations and turbulence rotation in the T-10 tokamak
title_short Study of plasma potential, its fluctuations and turbulence rotation in the T-10 tokamak
title_full Study of plasma potential, its fluctuations and turbulence rotation in the T-10 tokamak
title_fullStr Study of plasma potential, its fluctuations and turbulence rotation in the T-10 tokamak
title_full_unstemmed Study of plasma potential, its fluctuations and turbulence rotation in the T-10 tokamak
title_sort study of plasma potential, its fluctuations and turbulence rotation in the t-10 tokamak
publisher Національний науковий центр «Харківський фізико-технічний інститут» НАН України
publishDate 2010
topic_facet Методы создания и нагрева плазмы
url http://dspace.nbuv.gov.ua/handle/123456789/17453
citation_txt Study of plasma potential, its fluctuations and turbulence rotation in the T-10 tokamak / A.V. Melnikov, V.A. Vershkov, S.A. Grashin, L.G. Eliseev, S.E. Lysenko, V.A. Mavrin, V.G. Merezhkin, S.V. Perfilov, D.A. Shelukhin, R.V. Shurygin, L.I. Krupnik, A.D. Komarov, A.S. Kozachek, A.I. Zhezhera // Вопросы атомной науки и техники. — 2010. — № 6. — С. 40-42. — Бібліогр.: 6 назв. — англ.
work_keys_str_mv AT melnikovav studyofplasmapotentialitsfluctuationsandturbulencerotationinthet10tokamak
AT vershkovva studyofplasmapotentialitsfluctuationsandturbulencerotationinthet10tokamak
AT grashinsa studyofplasmapotentialitsfluctuationsandturbulencerotationinthet10tokamak
AT eliseevlg studyofplasmapotentialitsfluctuationsandturbulencerotationinthet10tokamak
AT lysenkose studyofplasmapotentialitsfluctuationsandturbulencerotationinthet10tokamak
AT mavrinva studyofplasmapotentialitsfluctuationsandturbulencerotationinthet10tokamak
AT merezhkinvg studyofplasmapotentialitsfluctuationsandturbulencerotationinthet10tokamak
AT perfilovsv studyofplasmapotentialitsfluctuationsandturbulencerotationinthet10tokamak
AT shelukhinda studyofplasmapotentialitsfluctuationsandturbulencerotationinthet10tokamak
AT shuryginrv studyofplasmapotentialitsfluctuationsandturbulencerotationinthet10tokamak
AT krupnikli studyofplasmapotentialitsfluctuationsandturbulencerotationinthet10tokamak
AT komarovad studyofplasmapotentialitsfluctuationsandturbulencerotationinthet10tokamak
AT kozachekas studyofplasmapotentialitsfluctuationsandturbulencerotationinthet10tokamak
AT zhezheraai studyofplasmapotentialitsfluctuationsandturbulencerotationinthet10tokamak
first_indexed 2025-07-02T18:40:31Z
last_indexed 2025-07-02T18:40:31Z
_version_ 1836561603624960000
fulltext STUDY OF PLASMA POTENTIAL, ITS FLUCTUATIONS AND TURBULENCE ROTATION IN THE T-10 TOKAMAK A.V. Melnikov1, V.A. Vershkov1, S.A. Grashin1, L.G. Eliseev1, S.E. Lysenko1, V.A. Mavrin1, V.G. Merezhkin1, S.V. Perfilov1, D.A. Shelukhin1, R.V. Shurygin1, L.I. Krupnik2, A.D. Komarov2, A.S. Kozachek2, A.I. Zhezhera2 1Institute of Tokamak Physics RRC ''Kurchatov Institute'', Moscow, Russia; 2 Institute of Plasma Physics NSC “Kharkov Institute of Physics and Technology”, Kharkov, Ukraine E-mail: melnik@nfi.kiae.ru Plasma potential, its oscillations and turbulence rotation were studied on T-10 in a wide range of ohmic and ECRH regimes. The potential has negative sign over the whole plasma cross section. Broadband turbulence tends to rotate with E×B drift velocity. Rotation and potential evolve together with plasma confinement. Frequency of potential oscillations in the range of geodesic acoustic modes does not change with radius that disagrees with theoretical predictions. PACS: 52.35.Mw, 52.55.Fa 1. INTRODUCTION The direct experimental study of plasma radial electric field Er is the key issue to clarify E×B shear stabilization mechanisms. Comparison of plasma turbulence and Er×B 40 Series: Plasma Physics (16), p. 40-42. PROBLEMS OF ATOMIC SCIENCE AND TECHNOLOGY. 2010. № 6. Bt drift rotation may explain, whether the turbulence moves together with the plasma or independently. The absolute value of the core plasma potential ϕ was measured in the T-10 tokamak (R = 1.5 m, a = 0.3 m), by Heavy Ion Beam Probing (HIBP) with Tl ions. New high-voltage power supply and new system of remote control of focal distance allow us to increase the beam energy E + b up to 300 keV and focus the beam in any desirable point of the detector grid in plasma. The primary beam current achieved 200 μA and the beam diameter ~ 4 mm. Therefore we can observe the core potential at high densities ( en ≤ 4.1×10 m ). The ϕ profile in a wide area (0.2 < r/a < 0.9) was assembled from radial fragments measured with various E 19 -3 b and injection angles in a series of reproducible shots. At the limiter, the plasma potential and density were measured by Langmuir probes. The core plasma turbulence was studied by correlation reflectometry (CR). Also we used the standard set of diagnostics: soft X-rays (SXR), electron cyclotron emission (ECE), diamagnetic loops and other. Missing radial distributions of plasma parameters invoked from transport model with T-11 scaling for diffusivity [1]. 2. POTENTIAL MEASUREMENTS Various regimes with ohmic (OH), on- and off-axis ECR heating (B Parameters of studied regimes Reg. ⎯n, 1019 m-3 Er, V/cm Δr, cm BBt, T Ip, kA τE, ms 1-l 1.3 55 6-30 1.55 140 20 1-h 2.4 65 6-30 1.55 140 36 2 OH 2.5 70 7-22 2.08 165 38 2 EC 2.1 55 /47 7-22 2.08 165 /212 13/12 3 4.1 90 16-27 2.4 210 50 Bt = 1.55…2.4 T, Ip = 140…250 kA, en = (1.3…4.1)×10 m , P19 -3 EC < 1.5 MW) were first studied [2]. In first low-BtB , ohmic regime (1-l and 1-h in the Table) HIBP observed practically the whole plasma cross-section. Evolution of plasma parameters is shown in Fig. 1. The density⎯ne rises due to gas puffing, while the electron temperature Te slightly decreases. The potential profile evolution is shown in Fig. 2: the potential and Er tends to decrease with gas puff. The second regime had additional ECR heating and the current ramps up from 165 to 212 kA (Fig. 3). Fig. 1. Evolution of density ne, potential ϕ, energy confinement time τE and electron temperatures Te at the centre and at 21.7 cm in low-field regime 200 400 600 800 1000 0 10 20 During ECRH phase, the potential well becomes significantly shallower, Er decreases and confinement degrades. The potential has a weak dependence on Ip. No any strong irregularities in the potential near the EC power deposition radius rEC =15 cm during the slow (10 ms) timescale are seen: Er inside and outside rECRH was the same. The high-density ohmic regime 3 has maximal Er (Fig. 4). In all studied regimes, the potential was negative and Er(r) ~ const < 0 in the whole radial range of HIBP measurements, the potential well becomes deeper, and the mean Er increases with rise of density and the energy confinement time τE. 0,5 1,0 1,5 -700 -650 -600 -550 10 20 30 ϕ HIBP r = 20 cm n e (1 018 m -3 ) t (ms) ##57406-442, B=1.55 T n τE Te (a.u.) ECE r= -21.7cm T e ( 0) (k eV ) e ϕ (V ) τ E (m s) mailto:melnik@nfi.kiae.ru 41 3. E×B AND TURBULENCE ROTATION The plasma column rotates with E×B drift velocity not as a rigid body due to the BBt(R) dependence. The typical values for angular velocity is ΩE×BB ~ 1.5×104 rad/s for OH, and ΩE×B ~ 1.25×10 rad/s for ECRH stages (Fig. 5, a,b). B 5 10 15 20 25 30 4 Broadband drift-wave turbulence tends to rotate together with the E×B driven bulk plasma. Faster rotation corresponds to better confinement. 3. FLUCTUATIONS Geodesic Acoustic Modes (GAMs) may be possible mechanism of the turbulence self-regulation. The theory proposes the unified dispersion relation for GAMs and Beta induced Alfvén Eigenmodes (BAE) [3]. This mode 0 0 2 4 6 ΩTURB by CR ΩExB by HIBP r (cm) OH ) 0 5 10 15 20 25 30 Ω ⊥ [1 04 ra d/ s] (a 0 2 4 6 ΩTURB by CR ΩExB by HIBP Ω ⊥ (1 04 ra d/ s) r (cm) ECRH (b) Fig. 5. Plasma ExB and turbulence rotation in regime 2, measured by correlation reflectometer (CR) and ion beam (HIBP) in ohmic (a) and ECR phases (b) Fig. 6. Spectra of potential oscillations in regime 2. Peaks in ellipses are identified as GAMs 0 10 20 30 ECRH + ramp up ps d f, kHz OH #57712 ECRH Fig. 3. The potential profile in regime with additional heating and current ramp-up; ▲ arks position of EC resonance 0 10 20 30 -1500 -1000 -500 0 m r (cm) ϕ (V ) rECRH ##57704 - 57311 Bt = 2.08 T 47 V/cm EC+Ip ramp-up 70 V/cm, OH 55 V/cm EC Fig. 4. The potential profile in high-density ohmic regime 16 18 20 22 24 26 28 30 -1000 -500 0 ϕ (V ) r (cm) t=522 t=693 t=898 Er=90 V/cm ##57641, 57642, 57646, 57649, 57656 Fig. 2. The potential profile assembled from set of the scans for three densities in time instants marked by hatched rectangles in Fig. 1 0 5 10 15 20 25 30 ne=1.3x1019, Er=-55 V/cm -1500 -1000 -500 0 ne=2.0x1019, Er=-60 V/cm ne=2.4x1019, Er=-65 V/cm ϕ (V ) r (cm) #57412 а b presents a dominant peak in the power spectral density of potential. In some cases a higher frequency satellite appears (Fig. 6) [4]. Mode is more pronounced during ECRH, when the typical frequencies are seen in the band 22…27 kHz over the whole plasma cross-section. In all regimes the mode frequency is close to a constant over the investigated radial interval (Fig. 7) that inconsistent with theoretical predictions for the plasma core [5]. 42 However, at the outer edge, ρ = 0.95, the frequency value is consistent with theoretical prediction [6], which may be indicative these mode are the edge driven spatially global eigenmodes. The frequency weakly depends on the magnetic field and plasma density. With the density rise, first the satellite and then the main peak consequently disappear. The amplitude of potential perturbations is quite pronounced, is about a few tens of Volts in the ECRH phase, and increases towards the plasma centre. ACKNOWLEDGEMENT This work is supported by RFBR Grants 10-02-01385 and 08-02-01326, and STCU Project 4703. Fig. 7. Comparison of potential oscillations in regime 2 with analytical theory (lines) and 5-fields code calculations (star). Rectangle shows the region of the code validity 0 5 10 15 20 25 30 0 10 20 30 40 50 t=540 ms, n=1.3x1019m-3 t=540 ms, satellite t=800 ms, n=2.1x1019m-3 f ( kH z) r (cm) fTheory GAM / BAE 5-fields code REFERENCES 1. V.G. Merezhkin, V.S. Mukhovatov, A.R. Polevoj // J. Plasma Phys. 1988, v. 14, p. 69. 2. A.V. Melnikov, et al. Measurements of plasma potential, radial electric field and turbulence rotation velocity in the T-10 tokamak // 37th EPS Conference on Plasma Physics. Dublin, 2010. Rep. O5.128. 3. W.W. Heidbrink, et al. What is the "beta-induced alfven eigenmode?" // Phys. Plasmas. 1999, v. 6, p. 1147-1161. 4. A.V. Melnikov, et al. Investigation of geodesic acoustic mode oscillations in the T-10 tokamak // Plasma Phys. Control. Fusion. 2006, v. 48, p. S87-S110. 5. A.I. Smolyakov, et al. Electromagnetic effects on geodesic acoustic modes and beta Alfvén eigen modes // Nucl. Fusion. 2010, v. 50, p. 054002. 6. R.V. Shurygin, A.V. Melnikov. Turbulent dynamics of helical perturbations in the edge plasma of the T-10 tokamak // Plasma Phys. Rep. 2009, v. 35, N 4, p. 259-278. Article received 13.09.10 ИССЛЕДОВАНИЕ ПОТЕНЦИАЛА ПЛАЗМЫ, ЕГО ФЛУКТУАЦИЙ И ВРАЩЕНИЯ ТУРБУЛЕНТНОСТИ В ТОКАМАКЕ T-10 A.В. Mельников, В.A. Вершков, С.A. Грашин, Л.Г Eлисеев, С.E. Лысенко, В.A. Maврин, В.Г. Meрeжкин, С.В. Перфилов, Д.A. Шелухин, Р.В. Шурыгин, Л.И. Kрупник, A.Д. Koмаров, A.С. Koзачек, A.И. Жежера Потенциал плазмы, его колебания и вращение исследовались на токамаке T-10 в широком диапазоне омических и ЭЦР-режимов. Потенциал – отрицательный по всему сечению плазмы. Вращение турбулентности соответствует вращению за счет (E×B)-дрейфа. Вращение и потенциал чувствительны к изменениям удержания. Частота колебаний потенциала в диапазоне геодезических акустических мод не меняется по радиусу, что не соответствует локальной теории ГАМ. ДОСЛІДЖЕННЯ ПОТЕНЦІАЛУ ПЛАЗМИ, ЙОГО ФЛУКТУАЦІЙ ТА ОБЕРТАННЯ ТУРБУЛЕНЦІЇ У ТОКАМАЦІ Т-10 О.В. Mельніков, В.О. Вершков, С.A Грашин, Л.Г Єлісеєв, С.E. Лисенко, В.О. Maврін, В.Г. Meрeжкін, С.В. Перфілов, Д.О. Шелухін, Р.В. Шуригін, Л.І. Kрупнік, О.Д. Koмаров, О.С. Koзачок, О.І. Жежера Потенціал плазми, його коливання та обертання було досліджено на токамаці Т-10 у широкому діапазоні омічних та ЕЦР-режимів. Потенціал має негативну величину по всьому перетину плазми. Обертання турбуленції відповідає обертанню за рахунок (E×B)-дрейфу. Обертання і потенціал чутливі до зміни утримання. Частота коливань потенціалу у діапазоні геодезичних акустичних мод ні змінюється в залежності від радіусу, що не відповідає локальній теорії ГАМ.