Influence of magnetic field directions inhomogeneity on longitudinal propagation of wave beams in axisymmetrical magnetic trap

In present communication analytical and numerical investigations of electromagnetic waves with frequency near electron cyclotron frequency propagation in axisymmetrical magnetic trap are presented taking into account variation of magnetic field direction using ray tracing formalism. Influence of mag...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Datum:2010
Hauptverfasser: Gospodchikov, E.D., Smolyakova, O.B., Suvorov, E.V.
Format: Artikel
Sprache:English
Veröffentlicht: Національний науковий центр «Харківський фізико-технічний інститут» НАН України 2010
Schlagworte:
Online Zugang:http://dspace.nbuv.gov.ua/handle/123456789/17454
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Influence of magnetic field directions inhomogeneity on longitudinal propagation of wave beams in axisymmetrical magnetic trap / E.D. Gospodchikov, O.B. Smolyakova, E.V. Suvorov // Вопросы атомной науки и техники. — 2010. — № 6. — С. 43-45. — Бібліогр.: 5 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-17454
record_format dspace
spelling irk-123456789-174542011-02-27T12:06:48Z Influence of magnetic field directions inhomogeneity on longitudinal propagation of wave beams in axisymmetrical magnetic trap Gospodchikov, E.D. Smolyakova, O.B. Suvorov, E.V. Методы создания и нагрева плазмы In present communication analytical and numerical investigations of electromagnetic waves with frequency near electron cyclotron frequency propagation in axisymmetrical magnetic trap are presented taking into account variation of magnetic field direction using ray tracing formalism. Influence of magnetic field inhomogeneity on efficiency on electron cyclotron resonance heating of plasma in axisymmetrical magnetic trap is investigated. Obtained analytical results can explain numbers of experimental phenomena in electron cyclotron discharge in axisymmetrical magnetic traps experiments. Аналитически и численно исследованы особенности распространения электромагнитных волн электронного циклотронного диапазона частот в аксиально-симметричных магнитных ловушках с учетом как неоднородности модуля магнитного поля, так и соответствующей ей неоднородности направления магнитного поля. Продемонстрировано, что неоднородность направления магнитного поля может качественно изменить картину распространения волн и заметно сказаться на эффективности электронного циклотронного нагрева плазмы в прямой магнитной ловушке. Аналітично та чисельно досліджено особливості поширення електромагнітних хвиль електронного циклотронного діапазону частот в аксіально-симетричних магнітних пастках при взятих до уваги як неоднорідності модуля магнітного поля, так і відповідної до неї неоднорідності напрямку магнітного поля. Продемонстровано, що неоднорідність напрямку магнітного поля може якісно змінити картину розповсюдження хвиль та помітно позначитися на ефективності електронного циклотронного нагріву плазми в прямій магнітній пастці. 2010 Article Influence of magnetic field directions inhomogeneity on longitudinal propagation of wave beams in axisymmetrical magnetic trap / E.D. Gospodchikov, O.B. Smolyakova, E.V. Suvorov // Вопросы атомной науки и техники. — 2010. — № 6. — С. 43-45. — Бібліогр.: 5 назв. — англ. 1562-6016 http://dspace.nbuv.gov.ua/handle/123456789/17454 en Національний науковий центр «Харківський фізико-технічний інститут» НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
topic Методы создания и нагрева плазмы
Методы создания и нагрева плазмы
spellingShingle Методы создания и нагрева плазмы
Методы создания и нагрева плазмы
Gospodchikov, E.D.
Smolyakova, O.B.
Suvorov, E.V.
Influence of magnetic field directions inhomogeneity on longitudinal propagation of wave beams in axisymmetrical magnetic trap
description In present communication analytical and numerical investigations of electromagnetic waves with frequency near electron cyclotron frequency propagation in axisymmetrical magnetic trap are presented taking into account variation of magnetic field direction using ray tracing formalism. Influence of magnetic field inhomogeneity on efficiency on electron cyclotron resonance heating of plasma in axisymmetrical magnetic trap is investigated. Obtained analytical results can explain numbers of experimental phenomena in electron cyclotron discharge in axisymmetrical magnetic traps experiments.
format Article
author Gospodchikov, E.D.
Smolyakova, O.B.
Suvorov, E.V.
author_facet Gospodchikov, E.D.
Smolyakova, O.B.
Suvorov, E.V.
author_sort Gospodchikov, E.D.
title Influence of magnetic field directions inhomogeneity on longitudinal propagation of wave beams in axisymmetrical magnetic trap
title_short Influence of magnetic field directions inhomogeneity on longitudinal propagation of wave beams in axisymmetrical magnetic trap
title_full Influence of magnetic field directions inhomogeneity on longitudinal propagation of wave beams in axisymmetrical magnetic trap
title_fullStr Influence of magnetic field directions inhomogeneity on longitudinal propagation of wave beams in axisymmetrical magnetic trap
title_full_unstemmed Influence of magnetic field directions inhomogeneity on longitudinal propagation of wave beams in axisymmetrical magnetic trap
title_sort influence of magnetic field directions inhomogeneity on longitudinal propagation of wave beams in axisymmetrical magnetic trap
publisher Національний науковий центр «Харківський фізико-технічний інститут» НАН України
publishDate 2010
topic_facet Методы создания и нагрева плазмы
url http://dspace.nbuv.gov.ua/handle/123456789/17454
citation_txt Influence of magnetic field directions inhomogeneity on longitudinal propagation of wave beams in axisymmetrical magnetic trap / E.D. Gospodchikov, O.B. Smolyakova, E.V. Suvorov // Вопросы атомной науки и техники. — 2010. — № 6. — С. 43-45. — Бібліогр.: 5 назв. — англ.
work_keys_str_mv AT gospodchikoved influenceofmagneticfielddirectionsinhomogeneityonlongitudinalpropagationofwavebeamsinaxisymmetricalmagnetictrap
AT smolyakovaob influenceofmagneticfielddirectionsinhomogeneityonlongitudinalpropagationofwavebeamsinaxisymmetricalmagnetictrap
AT suvorovev influenceofmagneticfielddirectionsinhomogeneityonlongitudinalpropagationofwavebeamsinaxisymmetricalmagnetictrap
first_indexed 2025-07-02T18:40:34Z
last_indexed 2025-07-02T18:40:34Z
_version_ 1836561606306168832
fulltext INFLUENCE OF MAGNETIC FIELD DIRECTIONS INHOMOGENEITY ON LONGITUDINAL PROPAGATION OF WAVE BEAMS IN AXISYMMETRICAL MAGNETIC TRAP E.D. Gospodchikov, O.B. Smolyakova, E.V. Suvorov Institute of Applied Physics RAS, Nizhniy Novgorod, Russia E-mail: eggos@mail.ru In present communication analytical and numerical investigations of electromagnetic waves with frequency near electron cyclotron frequency propagation in axisymmetrical magnetic trap are presented taking into account variation of magnetic field direction using ray tracing formalism. Influence of magnetic field inhomogeneity on efficiency on electron cyclotron resonance heating of plasma in axisymmetrical magnetic trap is investigated. Obtained analytical results can explain numbers of experimental phenomena in electron cyclotron discharge in axisymmetrical magnetic traps experiments. PACS 52.35.Hr, 42.25.Bs, 52.50.Sw, 42.15.Dp 1. INTRODUCTION In axisymmetrical magnetic traps inhomogenity of magnetic field intensity and magnetic field direction are closely related to each other. These two types of inhomogeneities essentially change the structure of electromagnetic wave beams with frequencies of the order of electron cyclotron frequency. For example it was numerically shown [1] that inhomogeneity of magnetic field direction could be responsible for strong refraction of electromagnetic waves in axisymmetrical magnetic traps when plasma density higher than the critical one. Such refraction decreases the heating efficiency for quasi- longitudinal launch of rf power. This effect is related to peculiarities of the dependence of wave’s group velocity on the direction of magnetic field near electron cyclotron resonance (ECR) region. In this paper we present analytical investigation of electromagnetic waves propagation near ECR region of axisymmetrical magnetic trap with taking into account inhomogeneity of both magnetic field value and of its direction. Results are compared with well known analytical solution of Hamiltonian equations for ray propagation near ECR region under assumption that the direction of magnetic field is constant [2] (Note, nevertheless, that such magnetic field does not satisfy the Maxwell equation ). Conditions for ray concentration near the trap axis in the vicinity of ECR region are discussed which assumes effective wave absorption in the trap. 0divB = 2. ANALITICAL MODEL OF WAVE PROPAGATION NEAR ECR REGION AXISYMMETRICAL MAGNETIC FIELD Magnetic field in axisymmetrical system outside the region of its sources is determined from Maxwell equations: ( ) ( ) ( ) ( )⎪ ⎪ ⎩ ⎪⎪ ⎨ ⎧ ∂ ∂ = ∂ ∂ ∂ ∂ −= ∂ ∂ zr zr B r B z B z rB rr 1 . (1) Solution of these equations in paraxial approximation may be presented as: ( ) ( )⎪ ⎪ ⎩ ⎪ ⎪ ⎨ ⎧ ⎟ ⎠ ⎞ ⎜ ⎝ ⎛ ∂ ∂ −= ⎟ ⎠ ⎞ ⎜ ⎝ ⎛ ∂ ∂ = zF z rJB zF z rJB r z 1 0 , where ( ) ( )zFzBz =,0 is an arbitrary function, are Bessel functions presented as power series. Near ECR- surface magnetic field takes the form: 1,0J ( ) ⎟⎟ ⎠ ⎞ ⎜⎜ ⎝ ⎛ ±+= ...1 2 2 2 1 0 L z L zBzF , ⎟⎟ ⎠ ⎞ ⎜⎜ ⎝ ⎛ +≈ 2 2 2 1 0 2 1 L r L zBBz m , 1 0 2L rBBr −≈ , (2) ⎟⎟ ⎠ ⎞ ⎜⎜ ⎝ ⎛ ++≈ 2 1 2 1 0 1 L r L zBB ξ , with ⎟⎟ ⎠ ⎞ ⎜⎜ ⎝ ⎛ −±= 8 1 2 2 2 2 1 L L ξ . In the expression for B we take into account first non-zero terms over both coordinates z and r . Correspondingly terms in power series for and resulting in the next order corrections into the value of are omitted. zB rB B For description of wave propagation we use ray- tracing technique in the cold plasma approximation. In present communication we don’t discuss applicability of this approximation in detail (detail discussion can be find in [2, 3]). We only note that ray trajectories near ECR resonance surfaces are characteristic of wave equation [2, 4]. Near ECR region it is convenient to use ray Hamiltonian in form which do not include terms which tend to infinity at cyclotron frequency in spite of the fact, that some of dielectric tensor components possess such property. For example, such ray Hamiltonian for near longitudinal propagation of ECR waves may be written as [1]: ( ) ( ) 02,,, 2 || ||2 =−+= − − ⊥ ε ε ε NNNNzrH zr , (3) PROBLEMS OF ATOMIC SCIENCE AND TECHNOLOGY. 2010. № 6. 43 Series: Plasma Physics (16), p. 43-45. where ( )B P ωωω ωευε − −=−= − 2 || 1 ;1 , 2 2 ω ωυ P= , αα sincos zr NNN −=⊥ , αα cossin|| zr NNN += , zr BBtg /=α . It can be shown, that in the vicinity of ECR region for quasi-longitudinal propagation direction of group velocity is determined only by sign of . Using this fact one can see that the ray geometry depends only on the sign of ⊥N τ∂∂ ⊥ /N , B P B zr NN ωααε ω ω τ ⎟ ⎠ ⎞ ⎜ ⎝ ⎛ ∂ ∂ − ∂ ∂ −= ∂ ∂ ⊥ sincos||2 2 || , (4) or for paraxial approximation (2) on the sign of the expression 2 1 || 0 || 2 1sincos L r B B zr ⎟ ⎠ ⎞ ⎜ ⎝ ⎛ −≈⎟ ⎠ ⎞ ⎜ ⎝ ⎛ ∂ ∂ − ∂ ∂ ξεααε . (5) If 0 2 1 || <⎟ ⎠ ⎞ ⎜ ⎝ ⎛ −ξε , rays are “attracting” to the axis of magnetic system. If 0 2 1 || >⎟ ⎠ ⎞ ⎜ ⎝ ⎛ −ξε , rays are pushed out of the system in radial direction. Near ECR surface longitudinal propagated waves are strongly absorbed [3]. As result efficiency of ECR heating can be estimated as numbers of rays which attained ECR surface. And energy distribution profile can be estimated using transverse coordinates of rays. So, the condition 44 0 2 1 || <⎟ ⎠ ⎞ ⎜ ⎝ ⎛ −ξε (6) may be considered as a condition of effective wave absorption near the trap axis. In case 0 2 1 || ≈⎟ ⎠ ⎞ ⎜ ⎝ ⎛ −ξε terms which were neglected in (2), become of importance. It can be shown that if these terms are taken into account, additional critical points are arriving. For plasma with density lower than the critical one they are stable nodes. For plasma with density higher than the critical one they are «saddle» points. These points divide rays tending to the axis of a system and rays escaping in radial direction. It differs significantly from what takes place in the approximation of constant magnetic field direction, where governing parameter instead of (6) was ξε || [2]. For the traditional magnetic trap configuration parameter ξ increases from borders to central part of the trap, and condition 0 2 1 || =⎟ ⎠ ⎞ ⎜ ⎝ ⎛ −ξε separates regions where effective ECR heating can, or can’t be realized. For undercritical plasmas where 0|| >ε region of effective ECR heating is situated near board of magnetic trap, this result can explain low efficiency of ECR heating in experiments where resonance surface was situated in central part of the magnetic trap [5]. For overcritical plasmas where 0|| <ε over way region of effective ECR heating is situated in central part of the trap. 3. NUMERICAL MODELING In Figs. 1-4 results of numerical ray tracing modeling near ECR surface are presented, for different parameters of magnetic field distribution (for modeling we use expression for magnetic field components including all terms of paraxial expansion), and different values of plasma density, which is assumed to be homogeneous. Ray trajectories are shown by solid lines, ECR surface is denoted by the dashed line. Results of numerical simulations fully confirm the resume of analytical investigation. When 0 2 1 || <⎟ ⎠ ⎞ ⎜ ⎝ ⎛ −ξε rays tend to axis of magnetic system, for 0 2 1 || >⎟ ⎠ ⎞ ⎜ ⎝ ⎛ −ξε rays tends to infinity in radial direction, and in case 0 2 1 || ≈⎟ ⎠ ⎞ ⎜ ⎝ ⎛ −ξε additional critical points are presented. a b Fig. 1. Ray trajectories for 1=ξ : a) 8.0=υ , b) 2=υ a b Fig. 2. Ray trajectories for 3.0=ξ : a) 8.0=υ ,b) 2=υ a b Fig. 3. Ray trajectories for 3.0−=ξ : a) 8.0=υ ,b) 2=υ 0 2 0 5 1 - - - - 0 1 - - 0 4 8 -4 -3 -2 -1 0 1 -10 -5 0 5 10 - - - 0 1 - - 0 5 - - 0 - - 0 4 8 - - - - 0 2 4 0 - - 8 45 a b Fig. 4. Ray trajectories for 5.0=ξ : a) 8.0=υ ,b) 2=υ a b Fig. 5. Ray trajectories for : a)zB || 8.0=υ ,b) 2=υ In Fig.5 results of modeling under assumption of constant magnetic field direction, and distribution of magnetic filed strength like in case of Fig. 2 are presented. For constant magnetic field direction approximation ray trajectories are appreciably different as compared to the case of real magnetic field distribution. 4. CONCLUSION In present communication analytical and numerical investigations of electromagnetic waves propagation near electron cyclotron resonance surface are presented taking into account variation of both magnetic field and magnetic field direction. Differences with analytical solution for constant magnetic field direction are demonstrated. REFERENCES 1. E.D. Gospodchikov, O.B. Smolyakova, E.V. Suvorov. Ray Trajectories and Electron Cyclotron Absorption in an Axisymmetric Magnetic Confinement System // Plasma Physics Reports. 2007, v. 33, N 5, p. 427–434. 2. A.V. Zvonkov, A.V. Timofeev // Plasma Physics Reports. 1988, v. 14, N 10, p. 1270–1273. 3. E.D Gospodchikov, E.V. Suvorov. On Cyclotron Absorption of Electromagnetic Waves with Longitudinal Propagation in Magnetized Plasma // Radiophysics and Quantum Electronics. 2005, v. 48, N 8, p. 641-647. 4. A.D. Piliya, V.I. Fedorov // JETP. 1971, v. 60, N 1, p. 389. 5. R. Geller. Electron Cyclotron Resonance Sources: Historical Review and Future Prospects // Rev. of Scientific Instruments. 1998, v. 69, N 3, p. 1302-1310. Article received 13.09.2010 ВЛИЯНИЕ НЕОДНОРОДНОСТИ НАПРАВЛЕНИЯ МАГНИТНОГО ПОЛЯ НА РАСПРОСТРАНЕНИЕ ВОЛНОВЫХ ПУЧКОВ В ПРЯМЫХ МАГНИТНЫХ ЛОВУШКАХ Е. Д. Господчиков, О.Б. Смолякова, Е.В. Суворов Аналитически и численно исследованы особенности распространения электромагнитных волн электронного циклотронного диапазона частот в аксиально-симметричных магнитных ловушках с учетом как неоднородности модуля магнитного поля, так и соответствующей ей неоднородности направления магнитного поля. Продемонстрировано, что неоднородность направления магнитного поля может качественно изменить картину распространения волн и заметно сказаться на эффективности электронного циклотронного нагрева плазмы в прямой магнитной ловушке. ВПЛИВ НЕОДНОРІДНОСТІ НАПРЯМКУ МАГНІТНОГО ПОЛЯ НА ПОШИРЕННЯ ХВИЛЬОВИХ ПУЧКIВ У ПРЯМИХ МАГНІТНИХ ПАСТКАХ Є.Д. Господчиков, О.Б. Смолякова, Є.В. Суворов Аналітично та чисельно досліджено особливості поширення електромагнітних хвиль електронного циклотронного діапазону частот в аксіально-симетричних магнітних пастках при взятих до уваги як неоднорідності модуля магнітного поля, так і відповідної до неї неоднорідності напрямку магнітного поля. Продемонстровано, що неоднорідність напрямку магнітного поля може якісно змінити картину розповсюдження хвиль та помітно позначитися на ефективності електронного циклотронного нагріву плазми в прямій магнітній пастці. -6 -4 -2 0 2 -8 -4 0 4 8 - - - 0 - - 0 5 1 2 -6 -4 -2 0 2 -10 -5 0 5 10 8.0 - - - 4.0 0.0 0.0 2.0 - - Institute of Applied Physics RAS, Nizhniy Novgorod, Russia E-mail: eggos@mail.ru