Integral Representation of Hyperparabolic Equation

In this work, for functions that satisfy a Cauchy problem for hyperparabolic equations, we write integral equations and solve them using the method of successive approximations.

Збережено в:
Бібліографічні деталі
Дата:2001
Автор: Samoilenko, I.V.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2001
Назва видання:Нелінійні коливання
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/174623
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Integral Representation of Hyperparabolic Equation / I.V. Samoilenko // Нелінійні коливання. — 2001. — Т. 4, № 3. — С. 368-375 . — Бібліогр.: 5 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-174623
record_format dspace
spelling irk-123456789-1746232021-01-27T01:26:09Z Integral Representation of Hyperparabolic Equation Samoilenko, I.V. In this work, for functions that satisfy a Cauchy problem for hyperparabolic equations, we write integral equations and solve them using the method of successive approximations. 2001 Article Integral Representation of Hyperparabolic Equation / I.V. Samoilenko // Нелінійні коливання. — 2001. — Т. 4, № 3. — С. 368-375 . — Бібліогр.: 5 назв. — англ. 1562-3076 http://dspace.nbuv.gov.ua/handle/123456789/174623 en Нелінійні коливання Інститут математики НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description In this work, for functions that satisfy a Cauchy problem for hyperparabolic equations, we write integral equations and solve them using the method of successive approximations.
format Article
author Samoilenko, I.V.
spellingShingle Samoilenko, I.V.
Integral Representation of Hyperparabolic Equation
Нелінійні коливання
author_facet Samoilenko, I.V.
author_sort Samoilenko, I.V.
title Integral Representation of Hyperparabolic Equation
title_short Integral Representation of Hyperparabolic Equation
title_full Integral Representation of Hyperparabolic Equation
title_fullStr Integral Representation of Hyperparabolic Equation
title_full_unstemmed Integral Representation of Hyperparabolic Equation
title_sort integral representation of hyperparabolic equation
publisher Інститут математики НАН України
publishDate 2001
url http://dspace.nbuv.gov.ua/handle/123456789/174623
citation_txt Integral Representation of Hyperparabolic Equation / I.V. Samoilenko // Нелінійні коливання. — 2001. — Т. 4, № 3. — С. 368-375 . — Бібліогр.: 5 назв. — англ.
series Нелінійні коливання
work_keys_str_mv AT samoilenkoiv integralrepresentationofhyperparabolicequation
first_indexed 2025-07-15T11:39:05Z
last_indexed 2025-07-15T11:39:05Z
_version_ 1837712849608114176
fulltext Nonlinear Oscillations, Vol. 4, No. 3, 2001 INTEGRAL REPRESENTATION OF HYPERPARABOLIC EQUATION I. V. Samoilenko Institute of Mathematics, NAS of Ukraine Tereshchenkivs’ka St., 3, Kyiv, 01601, Ukraine In this work, for functions that satisfy a Cauchy problem for hyperparabolic equations, we write integral equations and solve them using the method of successive approximations. AMS Subject Classification: 60J30, 35Q40, 45L10 Introduction The Riemman method is a well-known method for solving a Cauchy problem for the telegraph equation [1]. But this method can’t be used for an analogue of the telegraph equation in Rn (hyperparabolic equations), and also nonlinear hyperparabolic equations that are defined later. 1. Cauchy Problem for Telegraph Equation The telegraph process and the corresponding random evolution is a model for the motion of a physical particle on a line, when the particle changes its direction of motion to the opposite in random moments of time. Besides, the telegraph process defines a “rectangular wave” as an oscillating process in problems of radioengineering [2]. It’s well-known [3] that a special form of a functional of the Markov random evolution satisfies the Cauchy problem ∂2 ∂t2 u(x, t) = −2λ ∂ ∂t u(x, t) + V 2 ∂ 2 ∂x2 u(x, t), (1) u(x, 0) = f(x), ∂ ∂t u(x, t) ∣∣∣ t=0 = V d dx f(x). But, for the functional u(x, t), it is possible to write an integral equation from the first jump of the process, u(x, t) = e−λtf(x+ V t) + λe−λt t∫ 0 f(x− V (t+ 2s))ds + λ2 t∫ 0 t−s∫ 0 e−λ(l+s)u(x+ V (s− l), t− (l + s))dlds. (2) 368 c© I. V. Samoilenko, 2001 INTEGRAL REPRESENTATION OF HYPERPARABOLIC EQUATION 369 The problem (1) can be obtained from (2). To do this, let us change the variables in (2), u(x, t) = e−λtf(x+ V t) + λe−λt t∫ 0 f(x− V (t+ 2s))ds − λ2e−λt t∫ 0 ∫ t−f 0 eλfu(x+ V (2s+ f − t), f)dsdf . Differentiating the last expression with respect to x and t we have ∂2 ∂x2 u(x, t) = e−λt d2 dx2 f(x+ V t) + λe−λt t∫ 0 d2 dx2 f(x− V (t+ 2s))ds − λ2e−λt t∫ 0 t−f∫ 0 eλf ∂2 ∂x2 u(x+ V (2s+ f − t), f)dsdf, ∂ ∂t u(x, t) =− λ [ e−λtf(x+ V t) + λe−λt t∫ 0 f(x− V (t− 2s))ds − λ2e−λt t∫ 0 t−f∫ 0 eλfu(x+ V (2s+ f − t), f)dsdf ] + [ V e−λt d dx f(x+ V t) − λV e−λt t∫ 0 d dx f(x− V (t− 2s))ds+ λ2V e−λt t∫ 0 t−f∫ 0 eλf × ∂ ∂x u(x+ V (2s+ f − t), f)dsdf ] + λe−λtf(x+ V t)− λ2e−λt t∫ 0 eλf × u(x+ V t− V f, f)df = −λu(x, t) + [ V e−λt d dx f(x+ V t) − λV e−λt t∫ 0 d dx f(x− V (t− 2s))ds+ λ2V e−λt t∫ 0 t−f∫ 0 eλf 370 I.V. SAMOILENKO × ∂ ∂x u(x+ V (2s+ f − t), f)dsdf ] + λe−λtf(x+ V t) − λ2e−λt t∫ 0 eλfu(x+ V t− V f, f)df, ∂2 ∂t2 u(x, t) =− λ ∂ ∂t u(x, t)− λ [ V e−λt d dx f(x+ V t)− λV e−λt × t∫ 0 d dx f(x− V (t− 2s))ds+ λ2V e−λt t∫ 0 t−f∫ 0 eλf ∂ ∂x u(x+ V (2s + f − t), f)dsdf + λe−λtf(x+ V t)− λ2e−λt t∫ 0 eλfu(x+ V t− V f, f)df ] + V 2 [ e−λt d2 dx2 f(x+ V t) + λe−λt t∫ 0 d2 dx2 f(x− V (t− 2s))ds − λ2e−λt t∫ 0 t−f∫ 0 eλf ∂2 ∂x2 u(x+ V (2s+ f − t), f)dsdf ] − λV e−λt d dx f(x + V t) + λ2V e−λt t∫ 0 eλf d dx u(x+ V t− V f, f)df + λV e−λt d dx f(x + V t)− λ2V e−λt t∫ 0 eλf d dx u(x+ V t− V f, f)df + λ2e−λteλtu(x, t) =− λ ∂ ∂t u(x, t)− λ [ ∂ ∂t u(x, t) + λu(x, t) ] + V 2 ∂ 2 ∂x2 u(x, t) + λ2u(x, t) =− 2λ ∂ ∂t u(x, t) + V 2 ∂ 2 ∂x2 u(x, t). We thus obtained the Cauchy problem (1). The following theorem holds. INTEGRAL REPRESENTATION OF HYPERPARABOLIC EQUATION 371 Theorem 1. The function u(x, t), satisfying (1) under the condition of integrability of u(x, t) and f(x), satisfies equation (2). The function u(x, t), satisfying (1) under the condition of di- fferentiability with respect to x and t, satisfies the Cauchy problem (1). The Cauchy problem (1) and equation (2) are equivalent in this sense. Let us consider the question of whether there exist a solution of (2) in the space of functions φ(x, t) = φ0(x, t) + c, (3) where c = const, φ0(x) → 0, x, t → ∞ . This Banach space with sup-norm was studied in the works of V.S.Koroljuk and A.F. Turbin (see, for example, [4]). Let us write (2) in the following form: u(x, t) = Au(x, t), where Au(x, t) is equal the right- hand side of (2). A acts in the space (3), when f(x) = f0(x) + c. Indeed, A(φ0 + c) =e−λt(f0(x) + c) + λe−λt t∫ 0 [f0(x)(x− V (t− 2s)) + c]ds + λ2 t∫ 0 t−s∫ 0 e−λ(l+s)[φ0(x+ V (s− l), t− (s+ l)) + c]dlds = { f0(x)e −λt + λe−λt ∫ t 0 f0(x)(x− V (t− 2s))ds+ λ2 t∫ 0 t−s∫ 0 e−λ(l+s)φ0(x+ V (s− l), t − (s+ l))dlds } + { e−λtc+ λe−λttc+ λ2 ( − 1 λ e−λtct− 1 λ2 (e−λt − 1)c )} = { f0(x)e −λt + λe−λt t∫ 0 f0(x)(x− V (t− 2s))ds+ λ2 t∫ 0 t−s∫ 0 e−λ(l+s) × φ0(x+ V (s− l), t− (s+ l))dlds } + c, where the expression in braces converges to 0 as x, t → ∞. Indeed, e−λt t∫ 0 f(x)dx < e−λt t∫ 0 sup x |f(x)|dx = sup x |f(x)|te−λt → 0, x, t → ∞, t > 0, 372 I.V. SAMOILENKO t∫ 0 t−s∫ 0 e−λ(l+s)φ0(x+ V (s− l), t− (s+ l))dlds < sup x,t |φ0(x+ V (s− l), t− (s+ l))| t∫ 0 t−s∫ 0 e−λ(l+s)dlds = sup x,t ∫ t 0 ( − 1 λ )[ e−λt − e−λs ] ds = sup x,t [ − 1 λ te−λt − 1 λ2 ( e−λt − 1 )] → 0, x, t → ∞. Let us show that A is a contraction. We have ρ(Aφ1, Aφ2) = sup x,t |λ2 t∫ 0 t−s∫ 0 e−λ(l+s)φ1(x+ V (s− l), t− (s+ l))dlds − λ2 t∫ 0 t−s∫ 0 e−λ(l+s)φ2(x+ V (s− l), t− (s+ l))dlds ≤ λ2 t∫ 0 t−s∫ 0 e−λ(l+s) × |φ1(x+ V (s− l), t− (s+ l))− φ2(x+ V (s− l), t− (s+ l))|dlds = ρ(φ1, φ2)[−λte−λt − e−λt + 1], where [−λte−λt − e−λt + 1] < 1, so A is indeed a contraction. By the fixed point theorem, a solution of (2) exists and it is unique. Theorem 2. For f(x) from the space (3), equation (2) has a unique solution lying in (3). The solution is lim n→∞ un(x, t) = lim n→∞ Aun−1(x, t),where u0(x, t) is an arbitrary function from (3). But convergence also takes place in other spaces. Example 1. f(x) = x, u0(x, t) = 0, u1(x, t) = e−λt(x+ xt+ V t), . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . un(x, t) = e−λt ( x 2n−1∑ 0 tk k! λk + V λ 2n−1∑ 0 (λt)k k! ) , INTEGRAL REPRESENTATION OF HYPERPARABOLIC EQUATION 373 where k is even in the second sum, lim n→∞ un(x, t) = x+ V 2λ (1− e−2λt), which coincides with the first moment of the Markov random evolution found in [5]. It should be noted that this method can be used for hyperparabolic equations in Rn. 2. Nonlinear Hyperparabolic Equation A fading telegraph process and a fading Markov random evolution defines a motion of a particle on a line in the field of gravity, if the particle is attracted to some point on the line. From the point of view of radioengineering a fading telegraph process defines a fading “rectangular wave”. When we consider a generalization of a telegraph process, a fading telegraph process, another integral equation appears, u(V, x, t) = e−λtf(x+ V t) + λe−λt t∫ 0 f ( x+ V s− V c (t− s) ) + λ2 t∫ 0 t−s∫ 0 e−λ(l+s)u ( V c2 , x+ V s− V c l, t− (s+ l) ) dlds. (4) Let us note that for c = 1, equation (4) coincides with (2), where u(V, x, t) = u(x, t). By making the changes of variables, similar to the one in Section 1, and differentiating we get a Cauchy problem corresponding to (4), ∂3 ∂t3 u(V, x, t) + 3λ ∂2 ∂t2 u(V, x, t) + 3λ2 ∂ ∂t u(V, x, t)− λ2 ∂ ∂t u ( V c2 , x, t ) − V 2 c2 ∂3 ∂x2∂t u(V, x, t)− V 2λ c2 ∂2 ∂x2 u(V, x, t) − c− 1 c λ2V u ( V 2 c2 , x, t ) + λ3u(V, x, t)− λ3u ( V c2 , x, t ) = 0, (5) u(V, x, t) = f(x), ∂ ∂t u(x, t) ∣∣∣ t=0 = V d dx f(x), ∂2 ∂t2 u(x, t) ∣∣∣ t=0 = −c+ 1 c λV d dx f(x) + V 2 d 2 dx2 f(x). 374 I.V. SAMOILENKO For c = 1, we have ∂3 ∂t3 u(x, t) + 3λ ∂2 ∂t2 u(x, t) + 2λ2 ∂ ∂t u(x, t) − V 2 ∂3 ∂x2∂t u(x, t)− V 2λ ∂2 ∂x2 u(x, t) = 0 (6) or { ∂3 ∂t3 u(x, t) + 2λ ∂2 ∂t2 u(x, t)− V 2 ∂3 ∂x2∂t u(x, t) } + { λ ∂2 ∂t2 u(x, t) + 2λ2 ∂ ∂t u(x, t)− V 2λ ∂2 ∂x2 u(x, t) } = 0, ∂ ∂t { ∂2 ∂t2 u(x, t) + 2λ ∂ ∂t u(x, t)− V 2 ∂ 2 ∂x2 u(x, t) } + λ { ∂2 ∂t2 u(x, t) + 2λ ∂ ∂t u(x, t)− V 2 ∂ 2 ∂x2 u(x, t) } = 0, { ∂ ∂t + λ }{ ∂2 ∂t2 + 2λ ∂ ∂t − V 2 ∂ 2 ∂x2 } u(x, t) = 0. This is a factorized equation, one component of which coincides with (1). Correspondingly, if u(x, t) satisfies (5) for c = 1, then it satisfies (1). The proof of existence of a solution of (4) is similar to that in Section 1 for the space of functions φ(V, x, t) = φ0(V, x, t) + c. The following theorem holds. Theorem 3. The Cauchy problem for nonlinear hyperparabolic equation (5) is equivalent to integral equation (4) that has a solution in the space of functions φ(V, x, t) = φ0(V, x, t) + c, where c = const, φ0(V, x, t) → 0, V, x, t → ∞. As in Section 1, the method of successive approximations converges for the functions f(x) = xk. Example 2. f(x) = x, u0(V, x, t) = 0, u1(V, x, t) = e−λt ( x+ xt+ V t− V t2 2c + V t2 2 ) , INTEGRAL REPRESENTATION OF HYPERPARABOLIC EQUATION 375 u2(V, x, t) = u1(V, x, t) + λ2e−λt ( xt2 2 + xt3 6 + λ2t3V 6 c2 − c+ 1 c2 + λ3t4V 24 c3 − c2 + c− 1 c3 ) , lim n→∞ un(V, x, t) = x+ V c λ(c+ 1) ( 1− e−λt 1+c c ) . For c = 1, we have x+ V 2λ ( 1− e−2λt ) (see Example 1). REFERENCES 1. Glinner E.B. and Koshliakov N.S. Partial Differential Equations of Mathematical Physics [in Russian], Vysshaya Shkola, Moscow (1970). 2. Levin B.R. Theoretical Bases of Statistical Radio Engineering [in Russian], Soviet Radio, Moscow (1966). 3. Kac M. Probability and Related Questions in Physics [in Russian], Mir, Moscow (1965). 4. Koroljuk V.S. and Turbin A.F. Mathematical Foundation of State Lumping of Large Systems, Kluver Academic Press, Amsterdam (1990). 5. Turbin A.F. and Samoilenko I.V. “Probabilistic method of solution of telegraph equation with real-analytical initial conditions,” Ukr. Mat. Zh., 52, No. 8, 1127 – 1134 (2000). Received 05.12.2000