Global asymptotic stability of Cohen - Grossberg neural networks of neutral type

Sufficient conditions for existence and global asymptotic stability of a unique equilibrium point of a Cohen – Grossberg neural network of neutral type are obtained. An example is given.

Збережено в:
Бібліографічні деталі
Дата:2014
Автори: Akca, H., Covachev, V., Covacheva, Z.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2014
Назва видання:Нелінійні коливання
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/174688
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Global asymptotic stability of Cohen - Grossberg neural networks of neutral type / H. Akca, V. Covachev, Z. Covacheva // Нелінійні коливання. — 2014. — Т. 17, № 1. — С. 3-15. — Бібліогр.: 18 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-174688
record_format dspace
spelling irk-123456789-1746882021-01-28T01:27:13Z Global asymptotic stability of Cohen - Grossberg neural networks of neutral type Akca, H. Covachev, V. Covacheva, Z. Sufficient conditions for existence and global asymptotic stability of a unique equilibrium point of a Cohen – Grossberg neural network of neutral type are obtained. An example is given. Отримано достатнi умови iснування та глобальної стiйкостi єдиної точки рiвноваги для нейронної мережi Коена – Гроссберга нейтрального типу. 2014 Article Global asymptotic stability of Cohen - Grossberg neural networks of neutral type / H. Akca, V. Covachev, Z. Covacheva // Нелінійні коливання. — 2014. — Т. 17, № 1. — С. 3-15. — Бібліогр.: 18 назв. — англ. 1562-3076 http://dspace.nbuv.gov.ua/handle/123456789/174688 517.9 en Нелінійні коливання Інститут математики НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description Sufficient conditions for existence and global asymptotic stability of a unique equilibrium point of a Cohen – Grossberg neural network of neutral type are obtained. An example is given.
format Article
author Akca, H.
Covachev, V.
Covacheva, Z.
spellingShingle Akca, H.
Covachev, V.
Covacheva, Z.
Global asymptotic stability of Cohen - Grossberg neural networks of neutral type
Нелінійні коливання
author_facet Akca, H.
Covachev, V.
Covacheva, Z.
author_sort Akca, H.
title Global asymptotic stability of Cohen - Grossberg neural networks of neutral type
title_short Global asymptotic stability of Cohen - Grossberg neural networks of neutral type
title_full Global asymptotic stability of Cohen - Grossberg neural networks of neutral type
title_fullStr Global asymptotic stability of Cohen - Grossberg neural networks of neutral type
title_full_unstemmed Global asymptotic stability of Cohen - Grossberg neural networks of neutral type
title_sort global asymptotic stability of cohen - grossberg neural networks of neutral type
publisher Інститут математики НАН України
publishDate 2014
url http://dspace.nbuv.gov.ua/handle/123456789/174688
citation_txt Global asymptotic stability of Cohen - Grossberg neural networks of neutral type / H. Akca, V. Covachev, Z. Covacheva // Нелінійні коливання. — 2014. — Т. 17, № 1. — С. 3-15. — Бібліогр.: 18 назв. — англ.
series Нелінійні коливання
work_keys_str_mv AT akcah globalasymptoticstabilityofcohengrossbergneuralnetworksofneutraltype
AT covachevv globalasymptoticstabilityofcohengrossbergneuralnetworksofneutraltype
AT covachevaz globalasymptoticstabilityofcohengrossbergneuralnetworksofneutraltype
first_indexed 2025-07-15T11:44:19Z
last_indexed 2025-07-15T11:44:19Z
_version_ 1837713179489075200
fulltext UDC 517.9 GLOBAL ASYMPTOTIC STABILITY OF COHEN – GROSSBERG NEURAL NETWORKS OF NEUTRAL TYPE* ГЛОБАЛЬНА АСИМПТОТИЧНА СТIЙКIСТЬ НЕЙРОННИХ МЕРЕЖ КОЕНА – ГРОССБЕРГА НЕЙТРАЛЬНОГО ТИПУ H. Akça College Arts and Sci. Abu Dhabi Univ. P. O. Box 59911, Adu Dhabi, UAE e-mail: Haydar.Akca@adu.ac.ae V. Covachev Inst. Math. Bulgar. Acad. Sci., Sofia, Bulgaria e-mail: vcovachev@hotmail.com Z. Covacheva Middle East College, Muscat, Oman and Higher College Telecommunications and Post, Sofia, Bulgaria e-mail: zkovacheva@hotmail.com Sufficient conditions for existence and global asymptotic stability of a unique equilibrium point of a Cohen – Grossberg neural network of neutral type are obtained. An example is given. Отримано достатнi умови iснування та глобальної стiйкостi єдиної точки рiвноваги для ней- ронної мережi Коена – Гроссберга нейтрального типу. 1. Introduction. An artificial neural network is an information processing paradigm that is inspired by the way biological nervous systems, such as the brain, process information. The key element of this paradigm is the novel structure of the information processing system. It is composed of a large number of highly interconnected processing elements (neurons) working in unison to solve specific problems. Although the initial intent of artificial neural networks was to explore and reproduce human information processing tasks such as speech, vision, and knowledge processing, artificial neural networks also demonstrated their superior capability for classification and function approximation problems. This has great potential for solving complex problems such as systems control, data compression, optimization problems, pattern recognition, and system identification. Cohen – Grossberg neural network [10] and its various generalizations with or without trans- mission delays and impulsive state displacements have been a subject of intense investigation recently [3, 6, 7, 13, 16, 17]. In a Cohen – Grossberg neural network model, the feedback terms consist of amplification and stabilizing functions which are generally nonlinear. These terms provide a model with a special kind of generalization wherein many neural network models that are capable for content addressable memory such as additive neural networks, cellular neural ∗ The article is based on a report at the International Mathematical Conference DIF-2013. c© H. Akça, V. Covachev, Z. Covacheva, 2014 ISSN 1562-3076. Нелiнiйнi коливання, 2014, т . 17, N◦ 1 3 4 H. AKÇA, V. COVACHEV, Z. COVACHEVA networks and bidirectional associative memory networks and also biological models such as Lotka – Volterra models of population dynamics are included as special cases. In contrast to retarded systems, in neutral systems time delays appear explicitly in the state velocity vector. Neutral systems can be applied to describe more complicated nonlinear engi- neering and bioscience models, including those describing chemical reactors, transmission lines, partial element equivalent circuits in very large-scale integrated systems, and Lotka – Volterra systems [18, 14, 4, 1, 2, 9, 15]. Neural networks can be implemented using very large-scale integrated circuits. Therefore, both retarded-type delays and neutral type delays are inherent in the dynamics of neural networks. In the present paper we consider a Cohen – Grossberg neural network of neutral type more general than in [8]. A discrete-time analogue of this system provided with impulse conditions was considered in our previous paper [11]. Sufficient conditions for global asymptotic stabi- lity of the unique equilibrium point of the system are obtained by exploiting an appropriate Lyapunov functional. The conditions obtained are much more precise than in [8]. An example is given. 2. Preliminaries. We consider a Cohen – Grossberg neural network of neutral type consisting of m ≥ 2 elementary processing units (or neurons) whose state variables xi (i = 1,m which henceforth will stand for i = 1, 2, . . . ,m) are governed by the system ẋi(t) + m∑ j=1 eij ẋj(t− τj) = ai(xi(t)) −bi(xi(t)) + m∑ j=1 cijfj(xj(t)) + m∑ j=1 dijgj(xj(t− τj)) + Ii  , (1) i = 1,m, t > t0 = 0, with initial values prescribed by continuous functions xi(s) = φi(s) for s ∈ [−τ, 0], τ = = maxj=1,m{τj}. In (1), ai(xi) denotes an amplification function; bi(xi) denotes an appropri- ate function which supports the stabilizing (or negative) feedback term −ai(xi)bi(xi) of the unit i; fj(xj), gj(xj) denote activation functions; the parameters cij , dij are real numbers that represent the weights (or strengths) of the synaptic connections between the jth unit and the ith unit, respectively without and with time delays τj ; the real numbers eij show how the state velocities of the neurons are delay feed-forward connected in the network; the real constant Ii represents an input signal introduced from outside the network to the ith unit. Let E be the unit (m ×m)-matrix. Denote by E and |E| the (m ×m)-matrices with entries eij and |eij |, respectively. Definition 1 [5]. A real matrix A = (aij)m×m is said to be an M -matrix if aij ≤ 0 for i, j = 1,m, i 6= j, and all successive principal minors of A are positive. The assumptions that accompany the neural network (1) are given as follows: A1. The amplification functions ai : R → R+ are continuous and bounded in the sense that 0 < ai ≤ ai(x) ≤ ai for x ∈ R, i = 1,m, for some constants ai, ai. A2.The stabilizing functions bi : R → R are Lipschitz continuous and monotone increasing, namely, 0 < bi ≤ bi(x)− bi(y) x− y ≤ bi for x 6= y, x, y ∈ R, i = 1,m, ISSN 1562-3076. Нелiнiйнi коливання, 2014, т . 17, N◦ 1 GLOBAL ASYMPTOTIC STABILITY OF COHEN – GROSSBERG NEURAL NETWORKS . . . 5 for some constants bi, bi. A3. The activation functions fj , gj : R → R are Lipschitz continuous in the sense of sup x 6=y ∣∣∣∣fj(x)− fj(y) x− y ∣∣∣∣ = Fj , sup x 6=y ∣∣∣∣gj(x)− gj(y) x− y ∣∣∣∣ = Gj for x, y ∈ R, j = 1,m, where Fj , Gj denote positive constants. A4. ‖E‖ < 1, where ‖ · ‖ is the spectral matrix norm, and E − |E| is an M -matrix. The “stability condition” ‖E‖ < 1 guarantees the existence and uniqueness of the solution of the Cauchy problem. Since E − |E| is an M -matrix, it is nonsingular and its inverse has nonnegative entries only. Under these assumptions and the given initial conditions, there is a unique solution of system (1). The solution is a vector x(t) = (x1(t), x2(t), . . . , xm(t))T in which xi(t) are conti- nuously differentiable for t ∈ (0, β), where β is some positive number, possibly∞, An equili- brium point of system (1) is denoted by x∗ = (x∗1, x ∗ 2, . . . , x ∗ m)T where the components x∗i are governed by the algebraic system bi(x ∗ i ) = m∑ j=1 cijfj(x ∗ j ) + m∑ j=1 dijgj(x ∗ j ) + Ii, i = 1,m. (2) Definition 2. The equilibrium point x∗ = (x∗1, x ∗ 2, . . . , x ∗ m)T of system (1) is said to be globally asymptotically stable if any other solution x(t) = (x1(t), x2(t), . . . , xm(t))T of system (1) is defi- ned for all t > 0 and satisfies lim t→∞ x(t) = x∗. 3. Existence and global asymptotic stability of an equilibrium point. Sufficient conditions for existence and uniqueness of the solution x∗ of the algebraic system (2) are given by the following theorem. Theorem 1 ([11], Theorem 4.2). Let the assumptions A2, A3 hold. Suppose, further, that the following inequalities are valid: bi − 1 2 m∑ j=1 (|cij |Fj + |cji|Fi)− 1 2 m∑ j=1 (|dij |Gj + |dji|Gi) > 0, i = 1,m. (3) Then system (1) has a unique equilibrium point x∗ = (x∗1, x ∗ 2, . . . , x ∗ m)T . Further on we give sufficient conditions for the global asymptotic stability of the equilibrium point x∗ of system (1). ISSN 1562-3076. Нелiнiйнi коливання, 2014, т . 17, N◦ 1 6 H. AKÇA, V. COVACHEV, Z. COVACHEVA Theorem 2. Let the assumptions A1 –A4 hold. Suppose, further, that the inequalities aibi − 1 2 m∑ j=1 (ai|cij |Fj + aj |cji|Fi)− 1 2 m∑ j=1 (ai|dij |Gj + aj |dji|Gi)− − 1 2 m∑ j=1 ( aibi|eij |+ ajbj |eji| ) − 1 2 m∑ j=1 aj m∑ k=1 (|cji| |ejk|Fi + |cjk| |eji|Fk)− − 1 2 m∑ j=1 aj m∑ k=1 (|dji| |ejk|Gi + |djk| |eji|Gk) > 0, i = 1,m, (4) are valid and system (1) has an equilibrium point x∗ = (x∗1, x ∗ 2, . . . , x ∗ m)T whose components satisfy (2). Then the equilibrium point x∗ is globally asymptotically stable. Remark 1. Inequalities (3) can be deduced from (4) for ai = ai = 1, eij = 0 for i, j = 1,m. However, in general inequalities (4) do not imply (3). Remark 2. Inequalities (4) were given in [11] (Theorem 4.3) as a part of the sufficient condi- tions for the global asymptotic stability of the equilibrium point of the discrete-time counterpart of system (1) provided with impulsive conditions, for small values of the discretization step h. Remark 3. In [8] it is assumed that gj = fj , the functions bi(xi) and b−1 i (xi) are continuosly differentiable, and b′i(xi) are bounded both below and above by positive constants. Instead of the m inequalities (4) a single inequality is presented, which in our notation can be written as min i=1,m (aibi)− max i=1,m (aibi)‖E‖ − max i=1,m ai ( max i=1,m Fi‖C‖+ max i=1,m Gi‖D‖ ) (1 + ‖E‖) > 0, (5) where C and D are (m×m)-matrices with entries cij and dij , respectively. Though condition (5) seems much simpler than (4), in our opinion it is much less precise si- nce the individual lower and upper bounds, Lipschitz constants, and matrix entries are replaced by their minima or maxima, and matrix norms. Below we shall give an example of a system sati- sfying conditions (4) but not (5). Proof. Upon introducing the translations ui(t) = xi(t)− x∗i , ϕi(s) = φi(s)− x∗i we derive the system u̇i(t) + m∑ j=1 eij u̇j(t− τj) = ãi(ui(t)) −b̃i(ui(t)) + m∑ j=1 cij f̃j(uj(t))+ + m∑ j=1 dij g̃j(uj(t− τj))  , t > t0 = 0, (6) ui(s) = ϕi(s), s ∈ [−τ, 0], i = 1,m, ISSN 1562-3076. Нелiнiйнi коливання, 2014, т . 17, N◦ 1 GLOBAL ASYMPTOTIC STABILITY OF COHEN – GROSSBERG NEURAL NETWORKS . . . 7 where ãi(ui) = ai(ui + x∗i ), b̃i(ui) = bi(ui + x∗i )− bi(x∗i ), f̃j(uj) = fj(uj + x∗j )− fj(x∗j ), g̃j(uj) = gj(uj + x∗j )− gj(x∗j ). This system inherits the assumptions A1 –A4 given before. It suffices to examine the stability characteristics of the trivial equilibrium point u∗ = 0 of system (6). We define a Lyapunov functional V (t) by V (t) = 1 2 m∑ i=1  ui(t) + m∑ j=1 eijuj(t− τj) 2 + ωi t∫ t−τi u2 i (s) ds  , where the positive constants ωi, i = 1,m,will be determined later. First we notice that the value V (0) = 1 2 m∑ i=1  ϕi(0) + m∑ j=1 eijϕj(−τj) 2 + ωi 0∫ −τi ϕ2 i (s) ds  is completely determined from the initial values of the system. Then, calculating the rate of change of V (t) along the solutions of (6), we successively find V̇ (t) = m∑ i=1  ui(t) + m∑ j=1 eijuj(t− τj) u̇i(t) + m∑ j=1 eij u̇j(t− τj) + ωi 2 (u2 i (t)− u2 i (t− τi)) = = m∑ i=1  ui(t) + m∑ j=1 eijuj(t− τj)  ãi(ui(t)) −b̃i(ui(t)) + m∑ j=1 cij f̃j(uj(t)) + + m∑ j=1 dij g̃j(uj(t− τj)) + ωi 2 ( u2 i (t)− u2 i (t− τi) )= = m∑ i=1 −ãi(ui(t))b̃i(ui(t))ui(t) + ãi(ui(t))ui(t)  m∑ j=1 cij f̃j(uj(t)) + m∑ j=1 dij g̃j(uj(t− τj)) + + ãi(ui(t)) m∑ j=1 eijuj(t− τj) −b̃i(ui(t)) + m∑ j=1 cij f̃j(uj(t)) + + m∑ j=1 dij g̃j(uj(t− τj)) + ωi 2 ( u2 i (t)− u2 i (t− τi) ) ≤ ≤ m∑ i=1 −aibiu2 i (t) + ai|ui(t)|  m∑ j=1 |cij |Fj |uj(t)|+ m∑ j=1 |dij |Gj |uj(t− τj)| + ISSN 1562-3076. Нелiнiйнi коливання, 2014, т . 17, N◦ 1 8 H. AKÇA, V. COVACHEV, Z. COVACHEVA + ai m∑ j=1 |eij | |uj(t− τj)| bi |ui(t)|+ m∑ j=1 |cij |Fj |uj(t)|+ m∑ j=1 |dij |Gj |uj(t− τj)|  + + ωi 2 ( u2 i (t)− u2 i (t− τi) )  ≤ ≤ m∑ i=1 −aibiu2 i (t) + ai 2 m∑ j=1 |cij |Fj ( u2 i (t) + u2 j (t) ) + ai 2 m∑ j=1 |dij |Gj ( u2 i (t) + u2 j (t− τj) ) + + aibi 2 m∑ j=1 |eij | ( u2 i (t) + u2 j (t− τj) ) + ai 2 m∑ j=1 m∑ k=1 |eij | |cik|Fk ( u2 k(t) + u2 j (t− τj) ) + + ai 2 m∑ j=1 m∑ k=1 |eij | |dik|Gk ( u2 j (t− τj) + u2 k(t− τk) ) + ωi 2 ( u2 i (t)− u2 i (t− τi) ) = = m∑ i=1 − aibi − 1 2 ai m∑ j=1 |cij |Fj + Fi m∑ j=1 |cji|aj − ai 2 m∑ j=1 |dij |Gj − − aibi 2 m∑ j=1 |eij | − Fi 2 m∑ j=1 m∑ k=1 |cki| |ekj |ak − ωi 2 u2 i (t)+ + 1 2 Gi m∑ j=1 |dji|aj + m∑ j=1 |eji|ajbj + m∑ j=1 m∑ k=1 |eji| |cjk|ajFk + + m∑ j=1 m∑ k=1 (|eji| |djk|ajGk + |ekj | |dki|akGi)− ωi u2 i (t− τi)  . Choose ωi = Gi m∑ j=1 |dji|aj + m∑ j=1 |eji|ajbj + m∑ j=1 m∑ k=1 |eji| |cjk|ajFk+ + m∑ j=1 m∑ k=1 (|eji| |djk|ajGk + |ekj | |dki|akGi) > 0, then after some simplifications we obtain V̇ (t) ≤ − m∑ i=1 aibi − 1 2 m∑ j=1 (ai|cij |Fj + aj |cji|Fi) − ISSN 1562-3076. Нелiнiйнi коливання, 2014, т . 17, N◦ 1 GLOBAL ASYMPTOTIC STABILITY OF COHEN – GROSSBERG NEURAL NETWORKS . . . 9 − 1 2 m∑ j=1 (ai|dij |Gj + aj |dji|Gi)− 1 2 m∑ j=1 ( aibi|eij |+ ajbj |eji| ) − − 1 2 m∑ j=1 aj m∑ k=1 (|cji| |ejk|Fi + |cjk| |eji|Fk)− 1 2 m∑ j=1 aj m∑ k=1 (|dji| |ejk|Gi + |djk| |eji|Gk) u2 i (t). According to inequalities (4) there exists µ > 0 such that µ = min i=1,m aibi − 1 2 m∑ j=1 (ai|cij |Fj + aj |cji|Fi)− 1 2 m∑ j=1 (ai|dij |Gj + aj |dji|Gi) − − 1 2 m∑ j=1 ( aibi|eij |+ ajbj |eji| ) − 1 2 m∑ j=1 aj m∑ k=1 (|cji| |ejk|Fi + |cjk| |eji|Fk)− − 1 2 m∑ j=1 aj m∑ k=1 (|dji| |ejk|Gi + |djk| |eji|Gk)  , then V̇ (t) ≤ −µ‖u(t)‖2, t > 0, (7) where ‖v‖ = (∑m i=1 v 2 i )1/2 is the Euclidean norm of the vector v = (v1, v2, . . . , vm)T ∈ Rm. Inequality (7) shows that for any solution u(t) of system (6) the function V (t) is monotone decreasing and it is bounded below by 0. Thus there exists the limit L = limt→∞ V (t) ≥ 0. Let us integrate inequality (7) from 0 to t, V (t)− V (0) ≤ −µ t∫ 0 ‖u(s)‖2 ds for all t > 0, that is, t∫ 0 ‖u(s)‖2 ds ≤ (V (0)− V (t))/µ. The last inequality and L = limt→∞ V (t) ≥ 0 show that ∞∫ 0 ‖u(t)‖2 dt < ∞. (8) Below we show that the zero solution of system (6) is stable and (8) implies limt→∞ ‖u(t)‖ = 0, that is, limt→∞ ‖x(t) − x∗‖ = 0. This means that the equilibrium point x∗ of system (1) is globally asymptotically stable. ISSN 1562-3076. Нелiнiйнi коливання, 2014, т . 17, N◦ 1 10 H. AKÇA, V. COVACHEV, Z. COVACHEVA We complete the proof by arguments using fragments from the proofs of Theorems 1.1, 1.3 and 1.4 in [12] (Chapter 8). In the sequel for a vector v = (v1, v2, . . . , vm)T ∈ Rm we shall also use the norm |v| = max i=1,m |vi|. First we shall prove that for any ε > 0 there exists δ1 > 0 such that if∣∣∣∣∣ui(t) + m∑ i=1 eijuj(t− τij) ∣∣∣∣∣ ≤ δ1 for t ≥ 0, i = 1,m, and sup s∈[−τ,0] |ϕ(s)| ≤ δ1, then |u(t)| ≤ ε for t ≥ 0. Let T be an arbitrary positive number. For 0 ≤ t ≤ T we have |ui(t)| ≤ ∣∣∣∣∣ui(t) + m∑ i=1 eijuj(t− τij) ∣∣∣∣∣+ ∣∣∣∣∣ m∑ i=1 eijuj(t− τij) ∣∣∣∣∣ ≤ ≤ δ1 + m∑ i=1 |eij | |uj(t− τij)| ≤ ≤ δ1 + m∑ i=1 |eij | sup −τ≤t≤T |uj(t)| ≤ ≤ δ1 + m∑ i=1 |eij | ( sup 0≤t≤T |uj(t)|+ sup −τ≤s≤0 |ϕj(s)| ) ≤ ≤ m∑ i=1 |eij | sup 0≤t≤T |uj(t)|+ δ1 ( 1 + m∑ i=1 |eij | ) , thus sup 0≤t≤T |ui(t)| ≤ m∑ i=1 |eij | sup 0≤t≤T |uj(t)|+ δ1 ( 1 + m∑ i=1 |eij | ) or sup 0≤t≤T |ui(t)| − m∑ i=1 |eij | sup 0≤t≤T |uj(t)| ≤ δ1 ( 1 + m∑ i=1 |eij | ) for i = 1,m. If we introduce the vectors U(T ) = ( sup 0≤t≤T |u1(t)|, sup 0≤t≤T |u2(t)|, . . . , sup 0≤t≤T |um(t)| )T and e = (1, 1, . . . , 1)T , we can write the last inequalities in a matrix form as (E − |E|)U(T ) ≤ δ1(E + |E|)e, ISSN 1562-3076. Нелiнiйнi коливання, 2014, т . 17, N◦ 1 GLOBAL ASYMPTOTIC STABILITY OF COHEN – GROSSBERG NEURAL NETWORKS . . . 11 meaning inequalities between the respective components of the vectors. Since, by condition A4, E − |E| is an M -matrix, we obtain U(T ) ≤ δ1(E − |E|)−1(E + |E|)e. We have sup 0≤t≤T |u(t)| = sup 0≤t≤T max i=1,m |ui(t)| = max i=1,m sup 0≤t≤T |ui(t)| = |U(T )| ≤ δ1|(E − |E|)−1(E + |E|)e|. If we choose δ1 > 0 so small that δ1|(E − |E|)−1(E + |E|)e| < ε, then |u(t)| ≤ ε for 0 ≤ t ≤ T, where T was an arbitrary positive number. Thus, |u(t)| ≤ ε for t ≥ 0. Next we shall show that the zero solution of system (6) is stable, that is, for any ε > 0 there exists δ > 0 such that if sups∈[−τ,0] |ϕ(s)| ≤ δ, then |u(t)| ≤ ε for t ≥ 0. For any t ≥ 0 we get 1 2 m∑ i=1 ui(t) + m∑ j=1 eijuj(t− τj) 2 ≤ V (t) ≤ V (0) = = 1 2 m∑ i=1  ϕi(0) + m∑ j=1 eijϕj(−τj) 2 + ωi 0∫ −τi ϕ2 i (s) ds  ≤ ≤ δ2 2 m∑ i=1  1 + m∑ j=1 |eij | 2 + ωiτi  . If we choose δ ∈ (0, δ1) so small that δ2 m∑ i=1  1 + m∑ j=1 |eij | 2 + ωiτi  ≤ δ2 1 , then m∑ i=1 ui(t) + m∑ j=1 eijuj(t− τj) 2 ≤ δ2 1 , which implies that ∣∣∣∣∣ui(t) + m∑ i=1 eijuj(t− τij) ∣∣∣∣∣ ≤ δ1 for t ≥ 0, i = 1,m, and, consequently, |u(t)| ≤ ε for t ≥ 0. Because of stability of the zero solution of system (6) we can assume that |u(t)| ≤ h for some positive constant h when sups∈[−τ,0] |ϕ(s)| ≤ δ. Suppose that limt→∞ u(t) = 0 is not true. ISSN 1562-3076. Нелiнiйнi коливання, 2014, т . 17, N◦ 1 12 H. AKÇA, V. COVACHEV, Z. COVACHEVA In this case there exists a number ν > 0 and an increasing sequence {tk} such that tk → ∞ and |u(tk)| ≥ ν for k ∈ N. For the sake of brevity we write system (6) in the form d dt ui(t) + m∑ j=1 eijuj(t− τj)  = Fi(u(t), u(t− τ)), i = 1,m, t > 0, (9) where Fi(u, ū) := ãi(ui) −b̃i(ui) + m∑ j=1 cij f̃j(uj) + m∑ j=1 dij g̃j(ūj)  , i = 1,m. We denote Ci = sup |u|,|ū|≤h |Fi|, i = 1,m. For t ≥ 0 and ∆ > 0 integrate equation (9) from t to t+ ∆ to obtain ui(t+ ∆)− ui(t) = = − m∑ j=1 eij(uj(t+ ∆− τj)− uj(t− τj))+ + t+∆∫ t Fi(u(s), u(s− τ)) ds, hence |ui(t+ ∆)− ui(t)| ≤ m∑ j=1 |eij ||uj(t+ ∆− τj)− uj(t− τj)|+ + t+∆∫ t |Fi(u(s), u(s− τ))| ds ≤ ≤ m∑ j=1 |eij | sup t≥−τ |uj(t+ ∆)− uj(t)|+ Ci∆ ≤ ≤ m∑ j=1 |eij | ( sup t≥0 |uj(t+ ∆)− uj(t)|+ sup s∈[−τ,0] |uj(s+ ∆)− uj(s)| ) + Ci∆, ISSN 1562-3076. Нелiнiйнi коливання, 2014, т . 17, N◦ 1 GLOBAL ASYMPTOTIC STABILITY OF COHEN – GROSSBERG NEURAL NETWORKS . . . 13 thus sup t≥0 |ui(t+ ∆)− ui(t)| ≤ ≤ m∑ j=1 |eij | ( sup t≥0 |uj(t+ ∆)− uj(t)|+ sup s∈[−τ,0] |uj(s+ ∆)− uj(s)| ) + Ci∆ or sup t≥0 |ui(t+ ∆)− ui(t)| − m∑ j=1 |eij | sup t≥0 |uj(t+ ∆)− uj(t)| ≤ ≤ m∑ j=1 |eij | sup s∈[−τ,0] |uj(s+ ∆)− uj(s)|+ Ci∆, i = 1,m. If we introduce the vectors ρ(∆) = ( sup t≥0 |u1(t+ ∆)− u1(t)|, sup t≥0 |u2(t+ ∆)− u2(t)|, . . . , sup t≥0 |um(t+ ∆)− um(t)| )T , σ(∆) = = ( sup s∈[−τ,0] |u1(s+ ∆)− u1(s)|, sup s∈[−τ,0] |u2(s+ ∆)− u2(s)|, . . . , sup s∈[−τ,0] |um(s+ ∆)− um(s)| )T and C = (C1, C2, . . . , Cm)T ,we can write the last inequalities in a matrix form as (E−|E|)ρ(∆) ≤ ≤ |E|σ(∆) + ∆C. From here as above we obtain ρ(∆) ≤ (E − |E|)−1(|E|σ(∆) + ∆C) and sup t≥0 |u(t+ ∆)− u(t)| ≤ |(E − |E|)−1(|E|σ(∆) + ∆C)|. (10) Let η > 0 and ∆ ≤ η. Since u(t) is uniformly continuous on the interval [−τ, η], the right-hand side of (10) can be made arbitrarily small for sufficiently small values of ∆. Thus we can choose η > 0 so that |u(t+ ∆)− u(t)| ≤ ν/2 for all t ≥ 0 and ∆ ∈ [0, η]. In particular, |u(tk + ∆)| ≥ |u(tk)| − |u(tk + ∆)− u(tk)| ≥ ν − ν 2 = ν 2 or |u(t)| ≥ ν 2 and ‖u(t)‖2 ≥ ν2 4 for t ∈ [tk, tk + η], k ∈ N. Without loss of generality we can assume that the intervals [tk, tk + η] are disjoint (otherwise we choose a subsequence). Then ∞∫ 0 ‖u(t)‖2 dt ≥ ∞∑ k=1 tk+η∫ tk ‖u(t)‖2 dt ≥ ∞∑ k=1 η ν2 4 = ∞, ISSN 1562-3076. Нелiнiйнi коливання, 2014, т . 17, N◦ 1 14 H. AKÇA, V. COVACHEV, Z. COVACHEVA which contradicts (8). Thus limt→∞ u(t) = 0 is true and the proof is complete. 4. Example. Consider the system ẋ1(t) + 0.1ẋ1(t− τ1) + 0.15ẋ2(t− τ2) = (2 + 0.01 sinx1(t)) [−2x1(t) + 0.1 arctanx1(t)+ + 0.15 arctanx2(t) + 0.1 arctanx1(t− τ1) + 0.15 arctanx2(t− τ2) + 1] , (11) ẋ2(t)− 0.2ẋ1(t− τ1) + 0.2ẋ2(t− τ2) = (3− 0.02 sinx2(t)) [−3x2(t) + 0.15 arctanx1(t)− − 0.2 arctanx2(t) + 0.1 arctanx1(t− τ1)− −0.2 arctanx2(t− τ2) + 1] , t > 0, with arbitrary delays τ1, τ2 and initial conditions xi(s) = φ(s), i = 1, 2, s ∈ [−max{τ1, τ2}, 0]. System (11) has the form (1). It satisfies assumptions A1 –A4 with a1 = 1.99, a1 = 2.01, a2 = 2.98, a2 = 3.02, b1 = b1 = 2, b2 = b2 = 3, F1 = F2 = G1 = G2 = 1, ‖E‖ = = 0.2863903109 and E − |E| = [ 0.9 −0.15 −0.2 0.8 ] is an M -matrix. It is easy to see that system (11) satisfies inequalities (3). In fact, the left-hand sides of these inequalities are equal respectively to 1.525 and 2.325 for i = 1 and 2. Thus system (11) has a unique equilibrium point x∗. We can find that x∗ = (0.6027869379, 0.3353919007)T . Furthermore, system (11) satisfies the assumptions of Theorem 2. In fact, the left-hand si- des of inequalities (4) are equal respectively to 0.5415 and 4.449 for i = 1 and 2. Thus the equilibrium point x∗ of system (11) is globally asymptotically stable. On the other side, system (11) does not satisfy condition (5) since the left-hand side of the inequality equals −0.608775797. 1. Agarwal R. P., Grace S. R. Asymptotic stability of certain neutral differential equations // Math. Comput. Modelling. — 2000. — 31. — P. 9 – 15. 2. Agarwal R. P., Grace S. R. Asymptotic stability of differential systems of neutral type // Appl. Math. Lett. — 2000. — 13. — P. 15 – 19. 3. Arik S., Orman Z. Global stability analysis of Cohen – Grossberg neural networks with varying delays // Phys. Lett. A. — 2005. — 341. — P. 410 – 421. 4. Bellen A., Guglielmi N., Ruehli A. E. Methods for linear systems of circuit delay differential equations of neutral type // IEEE Trans. Circuits and Syst. I. Fund. Theory and Appl. — 1999. — 46. — P. 212 – 215. 5. Berman A., Plemmons R. J. Nonnegative matrices in mathematical sciences. — New York: Acad. Press, 1979. 6. Chen Z., Ruan J. Global dynamic analysis of general Cohen – Grossberg neural networks with impulse // Chaos Solitons Fractals. — 2007. — 32. — P. 1830 – 1837. 7. Chen Z., Ruan J. Global stability analysis of impulsive Cohen – Grossberg neural networks with delay // Phys. Lett. A. — 2005. — 345. — P. 101 – 111. 8. Cheng C.-J., Liao T.-L., Yan J.-J., Hwang C.-C. Globally asymptotic stability of a class of neutral-type neural networks with delays // IEEE Trans. Syst., Man, and Cybern. B. — 2006. — 36. — P. 1191 – 1195. 9. Clarkson I. D., Goodall D. P. On the stabilizability of imperfectly known nonlinear delay systems of the neutral type // IEEE Trans. Automat. Contr. — 2000. — 45. — P. 2326 – 2331. 10. Cohen M. A., Grossberg S. Absolute stability of global pattern formation and parallel memory storage by competitive neural networks // IEEE Trans. Syst., Man, and Cybern. — 1983. — 13. — P. 815 – 826. ISSN 1562-3076. Нелiнiйнi коливання, 2014, т . 17, N◦ 1 GLOBAL ASYMPTOTIC STABILITY OF COHEN – GROSSBERG NEURAL NETWORKS . . . 15 11. Covachev V., Akça H., Sarr M. Discrete-time counterparts of impulsive Cohen – Grossberg neural networks of neutral type // Neural Parallel Sci. Comput. — 2011. — 19. — P. 345 – 360. 12. Kolmanovskii V. B., Myshkis A. Introduction to the theory and applications of functional differential equati- ons. — Dordrecht etc.: Kluwer Acad. Publ., 1999. 13. Song Q., Cao J. Impulsive effects on stability of fuzzy Cohen – Grossberg neural networks with time-varying delays // IEEE Trans. Syst., Man, and Cybern. B. — 2007. — 37. — P. 733 – 741. 14. Tchangani A. P., Dambrine M., Richard J. P. Stability, attraction domains, and ultimate boundedness for nonli- near neutral systems // Math. Comput. Simul. — 1998. — 45. — P. 291 – 298. 15. Wang Z., Lam J., Burnham K. J. Stability analysis and observer design for neutral delay systems // IEEE Trans. Automat. Contr. — 2002. — 47. — P. 478 – 483. 16. Yang Z., Xu D. Impulsive effects on stability of Cohen – Grossberg neural networks with variable delays // Appl. Math. and Comput. — 2006. — 177. — P. 63 – 78. 17. Yang F., Zhang C., Wu D. Global stability of impulsive BAM type Cohen – Grossberg neural networks with delays // Appl. Math. and Comput. — 2007. — 186. — P. 932 – 940. 18. Yi Z. Stability of neutral Lotka – Volterra systems // J. Math. Anal. and Appl. — 1996. — 199. — P. 391 – 402. Received 12.09.13, after revision — 12.12.13 ISSN 1562-3076. Нелiнiйнi коливання, 2014, т . 17, N◦ 1