The Canonical Reduction Method for Symplectic Structures and Its Applications
The canonical reduction method is analized in detail and applied to Maxwell and Yang– Mills equations considered as Hamiltonian systems on some fiber bundles with symplectic and connection structures. The minimum interaction principle is proved to have geometric origin within the reduction method...
Gespeichert in:
Datum: | 2001 |
---|---|
Hauptverfasser: | Prykarpatsky, A.K., Samoilenko, V.H. |
Format: | Artikel |
Sprache: | English |
Veröffentlicht: |
Інститут математики НАН України
2001
|
Schriftenreihe: | Нелінійні коливання |
Online Zugang: | http://dspace.nbuv.gov.ua/handle/123456789/174694 |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Zitieren: | The Canonical Reduction Method for Symplectic Structures and Its Applications / A.K. Prykarpatsky, V.H. Samoilenko // Нелінійні коливання. — 2001. — Т. 4, № 3. — С. 354-367. — Бібліогр.: 10 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of UkraineÄhnliche Einträge
-
Symplectic Applicability of Lagrangian Surfaces
von: Musso, E., et al.
Veröffentlicht: (2009) -
Finite-Dimensional Reductions of Conservative Dynamical Systems and Numerical Analysis. I
von: Prykarpatsky, A.K., et al.
Veröffentlicht: (2001) -
Reduction of Symplectic Lie Algebroids by a Lie Subalgebroid and a Symmetry Lie Group
von: Iglesias, D., et al.
Veröffentlicht: (2007) -
The discrete nonlinear Schrödinger type hierarchy, its finite dimensional reduction analysis and numerical integrability scheme
von: Prykarpatsky, A.K., et al.
Veröffentlicht: (2017) -
The Bogolubov generating functional method in statistical physics and “collective” variables transform within the grand canonical ensemble
von: Bogolubov (jr.), N.N., et al.
Veröffentlicht: (2007)