Asymptotic stability for a thermoelectromagnetic material

In this work we consider a linear thermoelectromagnetic material, whose behaviour is characterized by two rate-type equations for the heat flux and the electric current density. We derive the restrictions imposed by the laws of thermodynamics on the constitutive equations and introduce the free en...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Datum:2001
1. Verfasser: Amendola, G.
Format: Artikel
Sprache:English
Veröffentlicht: Інститут математики НАН України 2001
Schriftenreihe:Нелінійні коливання
Online Zugang:http://dspace.nbuv.gov.ua/handle/123456789/174761
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Asymptotic stability for a thermoelectromagnetic material / G. Amendola // Нелінійні коливання. — 2001. — Т. 4, № 4. — С. 434-457 . — Бібліогр.: 8 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-174761
record_format dspace
spelling irk-123456789-1747612021-01-28T01:27:27Z Asymptotic stability for a thermoelectromagnetic material Amendola, G. In this work we consider a linear thermoelectromagnetic material, whose behaviour is characterized by two rate-type equations for the heat flux and the electric current density. We derive the restrictions imposed by the laws of thermodynamics on the constitutive equations and introduce the free energy which yields the existence of a domain of dependence. Uniqueness, existence and asymptotic stability theorems are then proved. 2001 Article Asymptotic stability for a thermoelectromagnetic material / G. Amendola // Нелінійні коливання. — 2001. — Т. 4, № 4. — С. 434-457 . — Бібліогр.: 8 назв. — англ. 1562-3076 AMS Subject Classification: 80A05, 74F05, 74F15 http://dspace.nbuv.gov.ua/handle/123456789/174761 en Нелінійні коливання Інститут математики НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description In this work we consider a linear thermoelectromagnetic material, whose behaviour is characterized by two rate-type equations for the heat flux and the electric current density. We derive the restrictions imposed by the laws of thermodynamics on the constitutive equations and introduce the free energy which yields the existence of a domain of dependence. Uniqueness, existence and asymptotic stability theorems are then proved.
format Article
author Amendola, G.
spellingShingle Amendola, G.
Asymptotic stability for a thermoelectromagnetic material
Нелінійні коливання
author_facet Amendola, G.
author_sort Amendola, G.
title Asymptotic stability for a thermoelectromagnetic material
title_short Asymptotic stability for a thermoelectromagnetic material
title_full Asymptotic stability for a thermoelectromagnetic material
title_fullStr Asymptotic stability for a thermoelectromagnetic material
title_full_unstemmed Asymptotic stability for a thermoelectromagnetic material
title_sort asymptotic stability for a thermoelectromagnetic material
publisher Інститут математики НАН України
publishDate 2001
url http://dspace.nbuv.gov.ua/handle/123456789/174761
citation_txt Asymptotic stability for a thermoelectromagnetic material / G. Amendola // Нелінійні коливання. — 2001. — Т. 4, № 4. — С. 434-457 . — Бібліогр.: 8 назв. — англ.
series Нелінійні коливання
work_keys_str_mv AT amendolag asymptoticstabilityforathermoelectromagneticmaterial
first_indexed 2025-07-15T11:55:30Z
last_indexed 2025-07-15T11:55:30Z
_version_ 1837713882943062016
fulltext Nonlinear Oscillations, Vol. 4, No. 4, 2001 ASYMPTOTIC STABILITY FOR A THERMOELECTROMAGNETIC MATERIAL* G. Amendola Dipartimento di Matematica Applicata “U.Dini”, Facoltà di Ingegneria via Diotisalvi 2, 56126-Pisa, Italy In this work we consider a linear thermoelectromagnetic material, whose behaviour is charac- terized by two rate-type equations for the heat flux and the electric current density. We derive the restrictions imposed by the laws of thermodynamics on the constitutive equations and introduce the free energy which yields the existence of a domain of dependence. Uniqueness, existence and asymptotic stability theorems are then proved. AMS Subject Classification: 80A05, 74F05, 74F15 1. Introduction Electromagnetic materials in presence of thermal effects have been studied by Coleman and Dill, who have also derived the restrictions which the laws of thermodynamics place on the constitutive equations [1, 2]. Heat conduction in electromagnetic solids has been considered in [3] to study its effects on the asymptotic behaviour of the solutions when constitutive equations with memory have been supposed for the heat flux and for the electric current density. In this work we are concerned with a linear thermoelectromagnetic solid, characterized by a rate-type equation both for the heat flux and for the electric current density, while the simple proportionality is assumed between the electric displacement, the magnetic induction and the electric and magnetic fields, respectively. After introducing in Sect. 2 Maxwell’s equations with the energy one, in Sect. 3 we consider the thermodynamics of simple materials [4, 5], in order to derive the restrictions on the consti- tutive equations and to introduce the free energy, which allows us to obtain, in the following section, a domain of dependence. A theorem of uniqueness, existence and asymptotic stability of solutions is then proved in the last section. 2. Basic Equations We consider a thermoelectromagnetic solid B, which at time t occupies a bounded and regular domain Ω in the three-dimensional Euclidean space R3. The position vector in Ω is denoted by x and n is the unit outward normal to the smooth boundary ∂Ω. We restrict our attention to the linear thermoelectromagnetic theory, where B is homoge- neous, isotropic and conducting material characterized, in particular, by two rate-type equa- tions both for the electric current density and for the heat flux. Thus, we assume for the electric displacement D, the magnetic induction B, the rate at which heat is absorbed per unit volume ∗ Work perfomed under the auspices of C.N.R. and M.U.R.S.T.. 434 c© G. Amendola, 2001 ASYMPTOTIC STABILITY FOR A THERMOELECTROMAGNETIC MATERIAL 435 h the following constitutive equations: D(x, t) = εE(x, t) + ϑ(x, t)a, B(x, t) = µH(x, t), (2.1) h(x, t) = cϑ̇(x, t) + Θ0 [ A1 · Ḋ(x, t)/ε+ A2 · Ḃ(x, t)/µ ] , (2.2) where E and H are the electric and magnetic fields, ϑ is the temperature relative to the uniform absolute reference temperature Θ0 in Ω, while for the electric current density J and for the heat flux q [6] we suppose that the following equations αJ̇(x, t) + J(x, t) = σE(x, t), τ q̇(x, t) + q(x, t) = −kg(x, t), (2.3) hold, where g = ∇ϑ is the temperature gradient. In these relations the dielectric constant ε, the permeability µ and the specific heat c are positive constants as well as the other two parameters α and τ ; moreover, a, A1 and A2 denote three constant vectors. The fundamental system of thermoelectromagnetism consists of Maxwell’s equations to- gether with the energy equation, i.e., ∇×H(x, t) = Ḋ(x, t) + J(x, t) + Jf (x, t), ∇×E(x, t) = −Ḃ(x, t), (2.4) ∇ ·B(x, t) = 0, ∇ ·D(x, t) = ρ, (2.5) h(x, t) = −∇ · q(x, t) + r(x, t), (2.6) where ρ is the free charge density, Jf denotes a forced current density and is a known function of x and t as well as r , which is the heat sources for unit volume; moreover, we have supposed that the mass density is unitary in (2.6). Sometimes we will understand the dependence on x. 3. Thermodynamic Restrictions on the Constitutive Equations The assumed constitutive equations allow us to consider B as a simple material, whose state is s = (E,H,J,q, ϑ), while the process of the material element is given by P (t) = (Ė(t), Ḣ(t), ϑ̇(t),g(t)) and the response function is U(t) = (D(t),B(t),J(t), h(t),q(t)) for every t ∈ [0, dP ) ⊂ R+, dP being the duration of the process. The First Law of Thermodynamics for these materials is expressed by this equality∮ [h(t) + Ḋ(t) ·E(t) + Ḃ(t) ·H(t) + J(t) ·E(t)]dt = 0, (3.1) which must hold for any cyclic process [1, 2], and, for smooth processes, yields the existence of the internal energy e which satisfies ė(t) = h(t) + Ḋ(t) ·E(t) + Ḃ(t) ·H(t) + J(t) ·E(t). (3.2) 436 G. AMENDOLA The Second Law states that for any cyclic process the inequality [1, 2]∮ { h(t)/[Θ0 + ϑ(t)] + q(t) · g(t)/[Θ0 + ϑ(t)]2 } dt ≤ 0 (3.3) holds, with the equality sign referring to reversible processes. Also by (3.3) it is possible to derive, for smooth processes, another local relation, η̇(t) ≥ h(t)/[Θ0 + ϑ(t)] + q(t) · g(t)/[Θ0 + ϑ(t)]2, (3.4) where η denotes the entropy. We are concerned with the linear theory, therefore we must consider the approximation of the Second Law; thus, (3.3) and (3.4) become [7]∮ {h(t)[Θ0 − ϑ(t)] + q(t) · g(t)} dt/Θ2 0 ≤ 0, (3.5) η̇(t) ≥ {h(t)[Θ0 − ϑ(t)] + q(t) · g(t)} /Θ2 0. (3.6) We first examine (3.5), which, eliminating Θ0h(t) by use of (3.1) and integrating on any cycle, yields∮ { h(t)ϑ(t)−Θ0[Ė(t) ·D(t) + Ḣ(t) ·B(t)− J(t) ·E(t)]− q(t) · g(t) } dt ≥ 0. (3.7) If we substitute into (3.7) the constitutive equations (2.1), (2.2) and the two relations, we can derive from (2.3) for E and g on supposing σ 6= 0 and k 6= 0, we get an inequality, which, integrated on any cycle, reduces to∮ {[ (A1 − a) · Ė(t) + A2 · Ḣ(t) ] ϑ(t) + 1 σ J2(t) + 1 kΘ0 q2(t) } dt ≥ 0. (3.8) From this inequality, taking account of the independence of Ė, Ḣ and g, it follows that A1 = a, A2 = 0, σ > 0, k > 0. (3.9) In particular, the expression (2.2), using (3.9)1,2 and (2.1), becomes h(x, t) = ( c+ Θ0a 2/ε ) ϑ̇(x, t) + Θ0a · Ė(x, t). (3.10) Let us introduce the pseudo-free energy ψ(x, t) = e(x, t)−Θ0η(x, t). (3.11) Substituting into (3.6) the expression of h derived by (3.2) and using (3.11) yields ψ̇(t) ≤ [h(t)ϑ(t)− q(t) · g(t)]/Θ0 + Ḋ(t) ·E(t) + Ḃ(t) ·H(t) + J(t) ·E(t). (3.12) ASYMPTOTIC STABILITY FOR A THERMOELECTROMAGNETIC MATERIAL 437 We introduce the following functional ψ̃(x, t) = 1 2 [ 1 ε D2(x, t) + 1 µ B2(x, t) + α σ J2(x, t) + τ kΘ0 q2(x, t) + c Θ0 ϑ2(x, t) ] . (3.13) We observe that this free energy ψ̃ satisfies (3.12). In fact, if we differentiate ψ̃ with respect to time, taking account of (2.1) and (3.10), eliminating J̇ and q̇ with (2.3), we get . ψ̃(t) = 1 Θ0 [h(t)ϑ(t)− q(t) · g(t)] + Ḋ(t) ·E(t) + Ḃ(t) ·H(t) + J(t) ·E(t)− 1 kΘ0 q2(t)− 1 σ J2(t), (3.14) which satisfies (3.12). 4. Domain of Dependence Inequality The system of equations of the evolutive problem of the thermoelectromagnetic solid B consists of (2.4) and (2.6), which, on account of (2.1) and (3.10), can be put in the following form: ∇×H(x, t) = εĖ(x, t) + ϑ̇(x, t)a + J(x, t) + Jf (x, t), (4.1) ∇×E(x, t) = −µḢ(x, t), (4.2) ( c+ Θ0a 2/ε ) ϑ̇(x, t) + Θ0a · Ė(x, t) = −∇ · q(x, t) + r(x, t), (4.3) together with (2.3) and (2.5)1, which becomes ∇ ·H(x, t) = 0 (4.4) for any (x, t) ∈ Ω×R+. We observe that Eq. (2.5)2, ε∇·E+∇ϑ ·a = ρ, allows us to determine ρ. To this system we must add the initial conditions E(x, 0) = E0(x), H(x, 0) = H0(x), J(x, 0) = J0(x), q(x, 0) = q0(x), ϑ(, 0) = ϑ0(x) ∀x ∈ Ω (4.5) and the boundary conditions E(x, t)× n = 0, ϑ(x, t) = 0 ∀(x, t) ∈ ∂Ω×R+. (4.6) Compatibility of the boundary conditions and the initial ones is assumed. We dente by P this initial-boundary-value problem. 438 G. AMENDOLA Theorem 4.1. The free energy defined by (3.13) satisfies −[E(t)×H(t) + ϑ(t)q(t)/Θ0] · u ≤ χψ̃(t), (4.7) where u is a unit vector and χ = 2 {( k τc )1/2 + 1 εµ [ ε1/2+ | a | ( Θ0 c )1/2 ] µ1/2 } . (4.8) Proof. To prove (4.7) it is enough to consider (3.13), from which it follows that 1 ε | D |≤ [ 2 ε ψ̃ ]1/2 , 1 µ | B |≤ [ 2 ε ψ̃ ]1/2 , | q |≤ [ 2k τ Θ0ψ̃ ]1/2 , | ϑ |≤ [ 2 c Θ0ψ̃ ]1/2 , (4.9) and to derive from (2.1) the expressions of E and H, which, taking account of (4.9)1,2, yield | E |≤ 21/2 ε [ ε1/2+ | a | ( Θ0 c )1/2 ] ψ̃1/2, | H |≤ [ 2 µ ψ̃ ]1/2 . (4.10) These inequalities give (4.7) at once. We are now in a position to show the existence of a domain of dependence introducing the total energy E (D , t) = ∫ D ψ̃(x, t)dx ∀D ⊂ Ω. (4.11) Theorem 4.2. The total energy E (D , t) satisfies the following inequality E(B(x0, ρ), T ) ≤ E(B(x0, ρ+ χT ), 0) + T∫ 0 ∫ Ω∩B(x0,ρ+χ(T−t)) [ 1 Θ0 r(x, t)ϑ(x, t)− Jf (x, t) ·E(x, t) ] dxdt (4.12) for any fixed (x0, T ) ∈ Ω×R+, with B(x0, ρ) = {x ∈ Ω : |x− x0| ≤ ρ} and χ given by (4.8). Proof. Let Eφ(Ω, t) = ∫ Ω ψ̃(x, t)φ(x, t)dx, (4.13) ASYMPTOTIC STABILITY FOR A THERMOELECTROMAGNETIC MATERIAL 439 where φ(x, t) ∈ C∞0 (R3,R+); its derivative with respect to time, taking account of (3.14) and eliminating h, Ḃ and Ḋ by the use of (2.6) and (2.4), can be written as Ėφ(Ω, t) = ∫ Ω { 1 Θ0 [rϑ−∇ · (ϑq)]− Jf ·E +∇×H ·E−∇×E ·H } φdx − ∫ Ω ( 1 σ J2 + 1 kΘ0 q2 ) φdx + ∫ Ω ψ̃φ̇dx. (4.14) This equality, using the identity ∇× E ·H−∇×H · E = ∇ · (E×H) and taking account of the boundary conditions (4.6) and (3.9)3,4, gives the following inequality: Ėφ(Ω, t) ≤ ∫ Ω (rϑ/Θ0 − Jf ·E)φdx + ∫ Ω [ (ϑq/Θ0 + E×H) · ∇φ+ ψ̃φ̇ ] dx − ∫ ∂Ω (ϑq/Θ0 + E×H) · nφda. (4.15) We now put φ(x, t) = φδ(x, t) = φδ(|x− x0| − ρ− χ(T − t)) = φδ(y) = { 1 ∀ y ≤ −δ, 0 ∀ y > δ, (4.16) where φδ ∈ C∞(R) is a nonnegative, monotonic decreasing function, δ > 0, ρ > 0 and χ is given by (4.8), for any fixed point x0 ∈ Ω and T ∈ R+ with t ∈ (0, T ). We have φ ′ δ(y) ≤ 0, φ̇δ(x, t) = φ ′ δ(y)χ, ∇φδ(x, t) = φ ′ δ(y)u(x), (4.17) where u = ∇ |x− x0| is a unit vector. Substituting (4.17)2,3 into (4.15) and using (4.17)1, (4.7) and (4.6) yield 4.18Ėφδ(Ω, t) ≤ ∫ Ω [r(x, t)ϑ(x, t)/Θ0 − Jf (x, t) ·E(x, t)]φδ(x, t)dx, (4.18) which, integrated over (0, T ), gives Eφδ(Ω, T )− Eφδ(Ω, 0) ≤ T∫ 0 ∫ Ω [r(x, t)ϑ(x, t)/Θ0 − Jf (x, t) ·E(x, t)]φδ(x, t)dxdt. (4.19) Whence, the limit as δ → 0 yields (4.12), because φδ(x, t) tends to the characteristic function of B(x0, ρ+ χ(T − t)). 440 G. AMENDOLA 5. Existence, Uniqueness and Asymptotic Stability The problem P, expressed by the system of equations (4.1) – (4.4) with (2.3) to which are associated the initial-boundary conditions (4.5), (4.6), can be transformed into an equivalent one with zero initial data, we shall denote by P′. For this purpose, we put E(x, t) = Ẽ(x, t) + l(x, t), H(x, t) = H̃(x, t) + p(x, t), J(x, t) = J̃(x, t) + w(x, t), q(x, t) = q̃(x, t) + z(x, t), ϑ(x, t) = ϑ̃(x, t) + γ(x, t), where (Ẽ, H̃, J̃, q̃, ϑ̃) and (l,p,w, z, γ) belong to the function spaces of the solution (E,H,J,q, ϑ) and hence, in particular, satisfy the boundary conditions (4.6); moreover, taking in mind (2.5), we suppose that (l,p, γ) satisfies ∇ · p = 0 and ε∇ · l = −∇γ · a and we impose the following initial conditions: l(x, 0) = E0(x), p(x, 0) = H0(x), w(x, 0) = J0(x), z(x, 0) = q0(x), γ(x, 0) = ϑ0(x). Then, we see that (Ẽ, H̃, J̃, q̃, ϑ̃) satisfies the system of equations of P, where the sources Jf and r must be changed and other sources must be introduced in the other equations; all these sources are expressed by F(x, t) = Jf (x, t) + εl̇(x, t) + γ̇(x, t)a + w(x, t)−∇× p(x, t), G(x, t) = −µṗ(x, t)−∇× l(x, t), R(x, t) = r(x, t)−Θ0l̇(x, t) · a− ( c+ Θ0a 2/ε ) γ̇(x, t)−∇ · z(x, t), I(x, t) = −αẇ(x, t)−w(x, t) + σl(x, t), Q(x, t) = −rż(x, t)− z(x, t)− k∇γ(x, t). We observe that the hypothesis that l and γ satisfy (2.5)2 without ρ implies that Ẽ and ϑ̃ satisfy (2.5)2 and give ρ without any new source. Using the same notation (E,H,J,q, ϑ), without ∼, the problem P′ is the following −εĖ(x, t)− ϑ̇(x, t)a +∇×H(x, t)− J(x, t) = F(x, t), (5.1) µḢ(x, t) +∇×E(x, t) = G(x, t), (5.2) Θ0a · Ė(x, t) + ( c+ Θ0a 2/ε ) ϑ̇(x, t) +∇ · q(x, t) = R(x, t), (5.3) αJ̇(x, t) + J(x, t)− σE(x, t) = I(x, t), (5.4) τ q̇(x, t) + q(x, t) + k∇ϑ(x, t) = Q(x, t), (5.5) ASYMPTOTIC STABILITY FOR A THERMOELECTROMAGNETIC MATERIAL 441 with (4.4), (4.5), which now become E0(x) = 0, H0(x) = 0, J0(x) = 0, q0(x) = 0, ϑ0(x) = 0, (5.6) and the boundary conditions (4.6). Taking account of the Maxwell equation (4.4) and the boundary conditions (4.6), we intro- duce the function spaces I (Ω) = H(x) ∈ L2(Ω) : ∫ Ω H · ∇ϕ dx = 0 ∀ϕ ∈ C∞0 (Ω)  , H1 E(Ω) = { E(x) ∈ L2(Ω) : ∇×E ∈ L2, E(x)× n |∂Ω= 0 } , H1 H(Ω) = { H(x) ∈ H1(Ω) : ∇ ·H = 0, H(x) · n |∂Ω= 0 } , H1 ϑ(Ω) = { ϑ(x) ∈ H1(Ω) : ϑ(x) |∂Ω= 0 } , H (Ω,R+) = L2(R+;H1 E(Ω))× L2(R+;H1 H(Ω))× L2(R+;L2(Ω)) × L2(R+;L2(Ω))× L2(R+;H1 ϑ(Ω)), W (Ω,R+) = H1(R+;L2(Ω))×H1(R+;L2(Ω))×H1(R+;L2(Ω)) ×H1(R+;L2(Ω))× { H1(R+;L2(Ω)) ∩ L2(R+;H1 ϑ(Ω)) } , V (Ω,R+) = L2(R+;L2(Ω))× L2(R+; I (Ω))× L2(R+;L2(Ω)) × L2(R+;L2(Ω))× L2(R+;L2(Ω)), which are Hilbert’s spaces with the usual scalar products. The sources belong to V (Ω,R+), modified in the following manner V ′(Ω,R+) = { (F,G, I,Q, R) ∈ V (Ω,R+) : ∂n+1 ∂tn+1 (F,G, I,Q, R) ∈ V (Ω,R+), [ ∂n ∂tn (F,G, I,Q, R) ] t=0 = 0 (n = 0, 1, 2, 3) } , where the last conditions on the initial values of the derivatives of the new sources are satisfied by a suitable choice of the corresponding derivatives of l, p, w, z and γ. 442 G. AMENDOLA Definition 5.1. A 5-tuple (E,H,J,q, ϑ) ∈ H (Ω,R+) is called weak solution of the problem P ′ with sources (F,G, I,Q, R) ∈ V ′(Ω,R+) if +∞∫ 0 ∫ Ω [εE(x, t) + ϑ(x, t)a] · ė(x, t)− µH(x, t) · ḣ(x, t)− αJ(x, t) · u̇(x, t) − τq(x, t) · v̇(x, t)−Θ0 [( c/Θ0 + a2/ε ) ϑ(x, t) + a ·E(x, t) ] β̇(x, t) +∇×E(x, t) · h(x, t) + [∇×H(x, t)− J(x, t)] · e(x, t)− q(x, t) · ∇β(x, t) + [J(x, t)− σE(x, t)] · u(x, t) +[q(x, t) + k∇ϑ(x, t)] · v(x, t)} dxdt = +∞∫ 0 ∫ Ω [F(x, t) · e(x, t) + G(x, t) · h(x, t) + I(x, t) · u(x, t) + Q(x, t) · v(x, t) +R(x, t)β(x, t)]dxdt (5.7) for all (e,h,u,v, β) ∈ W (Ω,R+) such that e(x, 0) = 0, h(x, 0) = 0, u(x, 0) = 0, v(x, 0) = 0, β(x, 0) = 0. Let us introduce the time-Fourier transform of the causal extension on R of a function g : R+ → Rn, ĝ(ω) = +∞∫ −∞ g(t) exp[−iωt]dt. (5.8) If g and g′ ∈ L2(R+), then the Fourier transforms ĝ and ĝ′ ∈ L2(R) and we have ĝ′(ω) = iωĝ(ω)− g(0), g(0) = 1 π +∞∫ −∞ ĝ(ω)dω. (5.9) We denote by Ĥ (Ω,R), Ŵ (Ω,R) and V̂ ′(Ω,R) the spaces of the Fourier transforms with respect to time of the corresponding functions of H (Ω,R+), W (Ω,R+) and V ′(Ω,R+). Be- tween each pair of these spaces there exists an isomorphism by virtue of Plancherel’s theorem, which allows us to define in a natural way the scalar products in Ĥ (Ω,R), Ŵ (Ω,R), V̂ ′(Ω,R) and to transform our problem as follows. ASYMPTOTIC STABILITY FOR A THERMOELECTROMAGNETIC MATERIAL 443 By use of Plancherel’s theorem and (5.9) with zero initial data, (5.7) yields 1 2π +∞∫ −∞ ∫ Ω ({ −iω[εÊ(x, ω) + ϑ̂(x, ω)a] +∇× Ĥ(x, ω) + Ĵ(x, ω) } · ê∗(x, ω) + [iωµĤ(x, ω) +∇× Ê(x, ω)] · ĥ∗(x, ω) + [(1 + iωα)Ĵ(x, ω) − σÊ(x, ω)] · û∗(x, ω) + [(1 + iωτ)q̂(x, ω) + k∇ϑ̂(x, ω)] · v̂∗(x, ω) + iωΘ0[(c/Θ0 + a2/ε)ϑ̂(x, ω) + a · Ê(x, ω)]β̂∗(x, ω)− q̂(x, ω) ·∇β̂∗(x, ω) ) dxdω = 1 2π +∞∫ −∞ ∫ Ω [F̂(x, ω) · ê∗(x, ω) + Ĝ(x, ω) · ĥ∗(x, ω) + Î(x, ω) · û∗(x, ω) + Q̂(x, ω) · v̂∗(x, ω) + R̂(x, ω)β̂∗(x, ω)]dxdω (5.10) for any (ê, ĥ, û, v̂, β̂) ∈ Ŵ (Ω,R). Here ∗ denotes the complex conjugate. Remark 5.1. Let (Ê, Ĥ, Ĵ, q̂, ϑ̂) be the Fourier transform of a weak solution of P′, as a consequence of (5.10) it follows that it is a weak solution of the problem we can derive by the formal application of the Fourier transfom with respect to time to the problem P′, i.e., −iω[εÊ(x, ω) + ϑ̂(x, ω)a]) +∇× Ĥ(x, ω)− Ĵ(x, ω) = F̂(x, ω), (5.11) iωµĤ(x, ω) +∇× Ê(x, ω) = Ĝ(x, ω), (5.12) iω [ Θ0a · Ê(x, ω) + ( c+ Θ0a 2/ε ) ϑ̂(x, ω) ] +∇ · q̂(x, ω) = R̂(x, ω), (5.13) (1 + iωα)Ĵ(x, ω)− σÊ(x, ω) = Î(x, ω), (5.14) (1 + iωτ)q̂(x, ω) + k∇ϑ̂(x, ω) = Q̂(x, ω), (5.15) with Ê(x, ω)× n = 0, ϑ̂(x, ω) = 0 (5.16) for all ω ∈ R. We observe that these boundary conditions, the first of which yields H · n = 0 too, and the assumed hypothesis on the greater regularities of ϑ ∈ H1 ϑ(Ω) and H ∈ H1 H(Ω) with Ω simply connected [8] yield the following inequalities:∫ Ω ∣∣∣ϑ̂∣∣∣2 dx ≤ βϑ(Ω) ∫ Ω ∣∣∣∇ϑ̂∣∣∣2 dx, ∫ Ω ∣∣∣Ĥ∣∣∣2 dx ≤ βH(Ω) ∫ Ω ∣∣∣∇× Ĥ ∣∣∣2 dx, (5.17) 444 G. AMENDOLA where βϑ(Ω) and βH(Ω) are constant and depend only on the domain Ω. We denote by Λ[(Ê, Ĥ, Ĵ, q̂, ϑ̂), (ê, ĥ, û, v̂, β̂)] and by 〈(F̂, Ĝ, Î, Q̂, R̂), (ê, ĥ, û, v̂, β̂)〉 the first and the second integral of (5.10), respectively. Theorem 5.1. For any (F̂, Ĝ, Î, Q̂, R̂) ∈ V̂ ′(Ω,R) there exists a unique solution (Ê, Ĥ, Ĵ, q̂, ϑ̂) ∈ Ĥ (Ω,R) such that Λ[(Ê, Ĥ, Ĵ, q̂, ϑ̂), (ê, ĥ, û, v̂, β̂)] = 〈(F̂, Ĝ, Î, Q̂, R̂), (ê, ĥ, û, v̂, β̂)〉 (5.18) for any (ê, ĥ, û, v̂, β̂) ∈ Ŵ (Ω,R). Proof. Uniqueness. To show the uniqueness of the solution, we prove that the homo- geneous system obtained by (5.11) – (5.15), where the right-hand side of each equation is put equal to zero, has only the zero solution for all ω ∈ R. Thus, keeping always in mind the system so modified, if we consider the inner product of the conjugate of (5.12) with Ĥ and integrate over Ω we have −iωµ ∫ Ω ∣∣∣Ĥ∣∣∣2 dx + ∫ Ω ∇× Ê∗ · Ĥdx = 0, (5.19) whose real part gives Re ∫ Ω ∇× Ê∗ · Ĥdx = 0. (5.20) From (5.11), the inner product with Ê∗, taking account of the identity∇× Ê∗ · Ĥ−∇× Ĥ · Ê∗ = ∇ · (Ê∗ × Ĥ) and (5.16)1, yields −iωε ∫ Ω ∣∣∣Ê∣∣∣2 dx− iωa · ∫ Ω ϑ̂Ê∗dx + ∫ Ω ∇× Ê∗ · Ĥdx− ∫ Ω Ĵ · Ê∗dx = 0, (5.21) from which and (5.20) it follows that ω Ima · ∫ Ω ϑ̂Ê∗dx = Re ∫ Ω Ĵ · Ê∗dx. (5.22) The real part of 1 σ (1− iωα) ∫ Ω ∣∣∣Ĵ∣∣∣2 dx− ∫ Ω Ê∗ · Ĵdx = 0, (5.23) derived by the inner product of the conjugate of (5.14) with Ĵ, together with (5.22) give ω Ima · ∫ Ω ϑ̂Ê∗dx = 1 σ ∫ Ω ∣∣∣Ĵ∣∣∣2 dx. (5.24) ASYMPTOTIC STABILITY FOR A THERMOELECTROMAGNETIC MATERIAL 445 From (5.13), multiplying by ϑ̂∗, upon an integration by parts and on account of (5.16)2, it follows that iω Θ0a · ∫ Ω Êϑ̂∗dx + ∫ Ω ( c+ Θ0a 2/ε ) ∣∣∣ϑ̂∣∣∣2 dx − ∫ Ω q̂ · ∇ϑ̂∗dx = 0, (5.25) whence ω Ima · ∫ Ω Êϑ̂∗dx = − 1 Θ0 Re ∫ Ω q̂ · ∇ϑ̂∗dx. (5.26) The real part of 1 k (1− iωτ) ∫ Ω |q̂|2 dx + ∫ Ω ∇ϑ̂∗ · q̂dx = 0, (5.27) obtained by taking the inner product of the conjugate of (5.15) with q̂, allows us to rewrite (5.26) as ω Ima · ∫ Ω Êϑ̂∗dx = 1 kΘ0 ∫ Ω |q̂|2 dx. (5.28) Adding (5.24) and (5.28) we get 1 σ ∫ Ω ∣∣∣Ĵ∣∣∣2 dx + 1 kΘ0 ∫ Ω |q̂|2 dx = 0, (5.29) from which, taking account of (3.9)3,4, we have ∫ Ω ∣∣∣Ĵ∣∣∣2 dx = 0, ∫ Ω |q̂|2 dx = 0. (5.30) Then, from (5.14) and (5.15) it follows that ∫ Ω ∣∣∣Ê∣∣∣2 dx = 0, ∫ Ω ∣∣∣∇ϑ̂∣∣∣2 dx = 0 (5.31) and from (5.17), or (5.13) and (5.12), analogous results hold for ϑ̂ and Ĥ. Existence. To prove the existence we consider the following lemmas. 446 G. AMENDOLA Lemma 5.1. For all ω ∈ R, any weak solution to the problem (5.11) – (5.16) satisfies the following inequality G(ω) ≤ ν2(ω) ∫ Ω (∣∣∣F̂∣∣∣2 + ∣∣∣Ĝ∣∣∣2 + ∣∣∣̂I∣∣∣2 + ∣∣∣Q̂∣∣∣2 + ∣∣∣R̂∣∣∣2) dx, (5.32) where G(ω) = ∫ Ω (∣∣∣Ê∣∣∣2 + ∣∣∣Ĥ∣∣∣2 + ∣∣∣Ĵ∣∣∣2 + |q̂|2 + ∣∣∣ϑ̂∣∣∣2 + ∣∣∣∇× Ê ∣∣∣2 + ∣∣∣∇× Ĥ ∣∣∣2 + ∣∣∣∇ϑ̂∣∣∣2)dx (5.33) and ν(ω) is a positive function of ω, Ω and the material constants. Proof. Let us integrate over Ω the relations derived by taking the inner products of (5.11) by Ê∗, aϑ̂∗ and ∇× Ĥ∗, of the conjugate of (5.12) by Ĥ and ∇× Ê, of (5.14) by Ê∗ and of the conjugate of the same (5.14) by Ĵ,∇×Ĥ and aϑ̂, of (5.15) by∇ϑ̂∗, of the conjugate of the same (5.15) by q̂ and multiplying (5.13) by ϑ̂∗. Thus, from (5.11), with two integrations similar to the one made to derive (5.21), we get − iωε ∫ Ω ∣∣∣Ê∣∣∣2 dx− iωa · ∫ Ω ϑ̂Ê∗dx + ∫ Ω Ĥ · ∇ × Ê∗dx − ∫ Ω Ĵ · Ê∗dx = ∫ Ω F̂ · Ê∗dx, (5.34) − iωεa · ∫ Ω Êϑ̂∗dx−iωa2 ∫ Ω ∣∣∣ϑ̂∣∣∣2 dx + a · ∫ Ω ∇× Ĥϑ̂∗dx − a · ∫ Ω Ĵϑ∗dx = ∫ Ω F̂ · aϑ̂∗dx, (5.35) − iωε ∫ Ω ∇× Ê · Ĥ∗dx−iωa · ∫ Ω ϑ̂∇× Ĥ∗dx + ∫ Ω ∣∣∣∇× Ĥ ∣∣∣2 dx − ∫ Ω Ĵ · ∇ × Ĥ∗dx = ∫ Ω F̂ · ∇ × Ĥ∗dx; (5.36) ASYMPTOTIC STABILITY FOR A THERMOELECTROMAGNETIC MATERIAL 447 from (5.12) we have −iωµ ∫ Ω ∣∣∣Ĥ∣∣∣2 dx + ∫ Ω ∇× Ê∗ · Ĥdx = ∫ Ω Ĝ∗ · Ĥdx, (5.37) −iωµ ∫ Ω Ĥ∗ · ∇ × Êdx + ∫ Ω ∣∣∣∇× Ê ∣∣∣2 dx = ∫ Ω Ĝ∗ · ∇ × Êdx; (5.38) from (5.13), with an integration by parts taking account of (5.16)2, we obtain iωΘ0a · ∫ Ω Êϑ̂∗dx + iω ( c+ Θ0a 2/ε ) ∫ Ω ∣∣∣ϑ̂∣∣∣2 dx− ∫ Ω q̂ · ∇ϑ̂∗dx = ∫ Ω R̂ϑ̂∗dx. (5.39) Moreover, (5.14) yields (1− iωα) ∫ Ω ∣∣∣Ĵ∣∣∣2 dx− σ ∫ Ω Ê∗ · Ĵdx = ∫ Ω Î∗ · Ĵdx, (5.40) (1 + iωα) ∫ Ω Ĵ · Ê∗dx− σ ∫ Ω ∣∣∣Ê∣∣∣2 dx = ∫ Ω Î · Ê∗dx, (5.41) (1− iωα) ∫ Ω Ĵ∗ · ∇ × Ĥdx− σ ∫ Ω ∇× Ê∗ · Ĥdx = ∫ Ω Î∗ · ∇ × Ĥdx, (5.42) (1− iωα)a · ∫ Ω Ĵ∗ϑ̂dx− σa · ∫ Ω Ê∗ϑdx = ∫ Ω Î∗ · aϑ̂dx, (5.43) in the last relation by one we have integrated as for (5.21). Finally, (5.15) gives (1− iωτ) ∫ Ω |q̂|2 dx + k ∫ Ω ∇ϑ̂∗ · q̂dx = ∫ Ω Q̂∗ · q̂dx, (5.44) (1 + iωτ) ∫ Ω q̂ · ∇ϑ̂∗dx + k ∫ Ω ∣∣∣∇ϑ̂∣∣∣2 dx = ∫ Ω Q̂ · ∇ϑ̂∗dx. (5.45) We first consider that the real and the imaginary parts of (5.44) Re ∫ Ω q̂ · ∇ϑ̂∗dx = 1 k Re ∫ Ω Q̂∗ · q̂dx− ∫ Ω |q̂|2 dx  , (5.46) Im ∫ Ω q̂ · ∇ϑ̂∗dx = 1 k Im ∫ Ω Q̂∗ · q̂dx + ωτ ∫ Ω |q̂|2 dx  , (5.47) 448 G. AMENDOLA from which, subtracting (5.47) multiplied by ωτ from (5.46) and taking account of Re ∫ Ω q̂ · ∇ϑ̂∗dx− ωτ Im ∫ Ω q̂ · ∇ϑ̂∗dx = Re ∫ Ω Q̂ · ∇ϑ̂∗dx− k ∫ Ω ∣∣∣∇ϑ̂∣∣∣2 dx, (5.48) the real part of (5.45), we obtain k ∫ Ω ∣∣∣∇ϑ̂∣∣∣2 dx− 1 k (1 + τ2ω2) ∫ Ω |q̂|2 dx = Re ∫ Ω Q̂ · ∇ϑ̂∗dx + 1 k ωτ Im ∫ Ω Q̂∗ · q̂dx− Re ∫ Ω Q̂∗ · q̂dx  . (5.49) Analogously, from the real and the imaginary parts of (5.40),∫ Ω ∣∣∣Ĵ∣∣∣2 dx− σRe ∫ Ω Ê∗ · Ĵdx = Re ∫ Ω Î∗ · Ĵdx, (5.50) −ωα ∫ Ω ∣∣∣Ĵ∣∣∣2 dx− σ Im ∫ Ω Ê∗ · Ĵdx = Im ∫ Ω Î∗ · Ĵdx, (5.51) and the real part of (5.41), −Re ∫ Ω Ĵ · Ê∗dx + ωα Im ∫ Ω Ĵ · Ê∗dx = −σ ∫ Ω ∣∣∣Ê∣∣∣2 dx− Re ∫ Ω Î · Ê∗dx, (5.52) we have σ ∫ Ω ∣∣∣Ê∣∣∣2 dx− 1 σ (1 + α2ω2) ∫ Ω ∣∣∣Ĵ∣∣∣2 dx = −Re ∫ Ω Î · Ê∗dx − 1 σ Re ∫ Ω Î∗ · Ĵdx− ωα Im ∫ Ω Î∗ · Ĵdx  . (5.53) A useful relation follows at once from the real part of (5.37), Re ∫ Ω ∇× Ê∗ · Ĥdx = Re ∫ Ω Ĝ∗ · Ĥdx. (5.54) If we consider (5.41) again, adding its real part (5.52) to the imaginary one, multiplied by ωα, we obtain the relation Re ∫ Ω Ĵ · Ê∗dx = 1 1 + α2ω2 σ ∫ Ω ∣∣∣Ê∣∣∣2 dx + Re ∫ Ω Î · Ê∗dx + ωα Im ∫ Ω Î · Ê∗dx  , (5.55) ASYMPTOTIC STABILITY FOR A THERMOELECTROMAGNETIC MATERIAL 449 which, together with (5.54), allows us to write the real part of (5.34) in as: ω Ima · ∫ Ω ϑ̂Ê∗dx = Re ∫ Ω F̂ · Ê∗dx− Re ∫ Ω Ĝ∗ · Ĥdx + 1 1 + α2ω2 σ ∫ Ω ∣∣∣Ê∣∣∣2 dx + Re ∫ Ω Î · Ê∗dx + ωα Im ∫ Ω Î · Ê∗dx  . (5.56) A different expression for the left-hand side of (5.56) can be derived from the real part of (5.39), which, on account of (5.46), can be written as follows: ω Ima · ∫ Ω ϑ̂Ê∗dx = 1 Θ0 Re ∫ Ω R̂ϑ̂∗dx + 1 k Re ∫ Ω Q̂∗q̂dx− ∫ Ω |q̂|2 dx  . (5.57) Finally, subtracting (5.57) from (5.56), we get σ ∫ Ω ∣∣∣Ê∣∣∣2dx + 1 kΘ0 (1 + α2ω2) ∫ Ω |q̂|2 dx = (1 + α2ω2)  1 kΘ0 Re ∫ Ω Q̂∗ · q̂dx + kRe ∫ Ω R̂ϑ̂∗dx − Re ∫ Ω F̂ · Ê∗dx + Re ∫ Ω Ĝ∗ · Ĥdx − Re ∫ Ω Î · Ê∗dx− ωα Im ∫ Ω Î · Ê∗dx. (5.58) This relation, if we subtract (5.53), yields 1 σ ∫ Ω ∣∣∣Ĵ∣∣∣2 dx + 1 kΘ0 ∫ Ω |q̂|2 dx = 1 kΘ0 Re ∫ Ω Q̂∗ · q̂dx + kRe ∫ Ω R̂ϑ̂∗dx  + 1 1 + α2ω2  1 σ Re ∫ Ω Î∗ · Ĵdx− ωα Im ∫ Ω Î · Ê∗dx + 1 σ Im ∫ Ω Î∗ · Ĵdx  − Re ∫ Ω F̂ · Ê∗dx + Re ∫ Ω Ĝ∗ · Ĥdx (5.59) and, moreover, gives an increase for 1 kΘ0 ∫ Ω |q̂|2 dx, which allows us to derive from (5.49) the 450 G. AMENDOLA inequality k Θ0 ∫ Ω ∣∣∣∇ϑ̂∣∣∣2 dx ≤ 1 Θ0 Re ∫ Ω Q̂ · ∇ϑ̂∗dx+ω τ k Im ∫ Ω Q̂∗ · q̂dx +ωτ Re ∫ Ω Q̂∗ · q̂dx + (1 + τ2ω2)  1 Θ0 Re ∫ Ω R̂ϑ̂∗dx + Re ∫ Ω Ĝ∗ · Ĥdx −Re ∫ Ω F̂ · Ê∗dx − 1 + τ2ω2 1 + α2ω2 Re ∫ Ω Î · Ê∗dx + ωα Im ∫ Ω Î · Ê∗dx  . (5.60) It remains to consider the real parts of (5.38) and (5.36), that is 1 µ ∫ Ω ∣∣∣∇× Ê ∣∣∣2 dx = 1 µ Re ∫ Ω Ĝ∗ · ∇ × Êdx− ω Im ∫ Ω ∇× Ê · Ĥ∗dx, (5.61) 1 ε ∫ Ω ∣∣∣∇× Ĥ ∣∣∣2 dx = 1 ε Re ∫ Ω F̂ · ∇ × Ĥ∗dx + Re ∫ Ω Ĵ · ∇ × Ĥ∗dx −ω Ima · ∫ Ω ϑ̂∇× Ĥ∗dx − ω Im ∫ Ω ∇× Ê · Ĥ∗dx, (5.62) where only the last three terms must be evaluated. To do this we first consider the imaginary part of (5.39), which, on account of (5.47), assumes the following form: ωRea · ∫ Ω Êϑ̂∗dx = 1 Θ0 Im ∫ Ω R̂ϑ̂∗dx + 1 k Im ∫ Ω Q̂∗ · q̂dx  + ω  τ kΘ0 ∫ Ω |q̂|2 dx− ( c Θ0 + a2 ε )∫ Ω ∣∣∣ϑ̂∣∣∣2 dx  . (5.63) ASYMPTOTIC STABILITY FOR A THERMOELECTROMAGNETIC MATERIAL 451 The imaginary part of (5.34), together with (5.51) and (5.63), yields the required quantity, −ω Im ∫ Ω ∇× Ê · Ĥ∗dx = ω Im ∫ Ω F̂ · Ê∗dx− 1 σ Im ∫ Ω Î∗ · Ĵdx + 1 Θ0 ( Im ∫ Ω R̂ϑ̂∗dx + 1 k Im ∫ Ω Q̂∗ · q̂dx )] + ω2 ε∫ Ω ∣∣∣Ê∣∣∣2 dx + τ kΘ0 ∫ Ω |q̂|2 dx− ( c Θ0 + a2 ε )∫ Ω ∣∣∣ϑ̂∣∣∣2 dx− α σ ∫ Ω ∣∣∣Ĵ∣∣∣2 dx  . (5.64) Then, from (5.43), adding its imaginary part to the real one multiplied by ωα, we obtain a relation, which, after introducing (5.57) and (5.63), gives ω ε Ima · ∫ Ω Ĵϑ̂∗dx = 1 1 + α2ω2 σ ε ω2α ( c Θ0 + a2 ε )∫ Ω ∣∣∣ϑ̂∣∣∣2 dx + (1− ω2ατ) 1 kΘ0 ∫ Ω |q̂|2 dx− ω α Θ0 Im ∫ Ω R̂ϑ̂∗dx + 1 k Im ∫ Ω Q̂∗ · q̂dx  − ω2α σ Re ∫ Ω Î∗ · aϑ̂dx− 1 Θ0 Re ∫ Ω R̂ϑ̂∗dx + 1 k Re ∫ Ω Q̂∗ · q̂dx  −ω σ Im ∫ Ω Î∗ · aϑ̂dx  . (5.65) This expression, together with (5.63), allows us to evaluate, from the imaginary part of (5.35), the other quantity −ω ε Ima · ∫ Ω ϑ̂∇× Ĥ∗dx = ω ε Im ∫ Ω F̂ · aϑ̂∗dx− 1 1 + α2ω2 1 ε  σ Θ0 Re ∫ Ω R̂ϑ̂∗dx + 1 k Re ∫ Ω Q̂∗ · q̂dx + ω ωαRe ∫ Ω Î∗ · aϑ̂dx + Im ∫ Ω Î∗ · aϑ̂dx  + ( 1− ασ ε 1 1 + α2ω2 ) ω kΘ0 Im ∫ Ω Q̂∗ · q̂dx + k Im ∫ Ω R̂ϑ̂∗dx  452 G. AMENDOLA + ω2 [ 1 1 + α2ω2 ασ ε ( c Θ0 + a2 ε ) − c Θ0 ] ∫ Ω ∣∣∣ϑ̂∣∣∣2 dx + [ τω2 ( 1− 1 1 + α2ω2 ασ ε ) + 1 1 + α2ω2 σ ε ] 1 kΘ0 ∫ Ω |q̂|2 dx. (5.66) Finally, for the third quantity we must derive, consider (5.42). Subtracting from its real part the imaginary one multiplied by ωα and taking into account (5.54) and (5.64), we get 1 ε Re ∫ Ω Ĵ·∇ × Ĥ∗dx = 1 1 + α2ω2 1 ε σRe ∫ Ω Ĝ∗ · Ĥdx + Re ∫ Ω Î∗ · ∇ × Ĥdx − ωα Im ∫ Ω Î∗ · ∇ × Ĥdx− ωασ Im ∫ Ω F̂ · Ê∗dx− 1 σ Im ∫ Ω Î∗ · Ĵdx+ + 1 kΘ0 Im ∫ Ω Q̂∗ · q̂dx + k Im ∫ Ω R̂ϑ̂∗dx + ω2ασ α σ ∫ Ω ∣∣∣Ĵ∣∣∣2 dx + ( c Θ0 + a2 ε )∫ Ω ∣∣∣ϑ̂∣∣∣2 dx − ε∫ Ω ∣∣∣Ê∣∣∣2 dx + τ kΘ0 ∫ Ω |q̂|2 dx  . (5.67) Thus, we have an estimate for all the quantities of (5.33), which, taking account of (5.17), can be increased as follows: ξG(ω) ≤ ∫ Ω {[ σ ∣∣∣Ê∣∣∣2 + 1 kΘ0 (1 + α2ω2) |q̂|2 ]( 1 σ ∣∣∣Ĵ∣∣∣2 + 1 kΘ0 |q̂|2 ) + 1 µ ∣∣∣∇× Ê ∣∣∣2 + [1 + εβH(Ω)] 1 ε ∣∣∣∇× Ĥ ∣∣∣2 dx + [ 1 + Θ0 k βϑ(Ω) ] k Θ0 ∣∣∣∇ϑ̂∣∣∣2} , (5.68) where ξ = min {σ, 1, 1/σ, 1/kΘ0, 1/µ, 1/ε, k/Θ0} . We consider the relations (5.58), (5.59) and (5.60) together with (5.61) and (5.62), which must be substituted into this inequality. We observe that in (5.64), (5.66) and (5.67), to be considered for (5.61) and (5.62), there are some negative terms which can be neglected, but there are the following positive terms ASYMPTOTIC STABILITY FOR A THERMOELECTROMAGNETIC MATERIAL 453 { [2 + εβH(Ω)]τω2 + [1 + εβH(Ω)] ( τω2 + σ ε 1 1 + α2ω2 )} 1 kΘ0 ∫ Ω |q̂|2dx  +[2 + εβH(Ω)] ε σ ω2 σ ∫ Ω ∣∣∣Ê∣∣∣2 dx + σα2 ε [1 + εβH(Ω)] ω2 1 + α2ω2  1 σ ∫ Ω ∣∣∣Ĵ∣∣∣2 dx  + 2 Θ0 k [1 + εβH(Ω)] ασ ε ( c Θ0 + a2 ε ) ω2 1 + α2ω2  k Θ0 ∫ Ω ∣∣∣ϑ̂∣∣∣2 dx  , whose four expressions, in parenthesis and containing the four integrals, can be increased by the right-hand sides of (5.59), (5.58), (5.59), (5.17)1 and (5.60), respectively. To simplify the result, it is useful to put β1 = [1 + εβH(Ω)]σ/ε, β2 = [2 + εβH(Ω)] ε/σ, β3 = [3 + 2εβH(Ω)] τ, β4 = 1 + Θ0βϑ(Ω)/k, β5 = 2 ( c/Θ0 + a2/ε ) αΘ0βϑ(Ω)/k, with which we define c1 = 2 + β1, c2 = α2 + β2 + β3, c3 = β2α 2, c4 = β1β5, c5 = β2σ/ε− β1α, c6 = β1/σ, c7 = 1 + β1 and finally we introduce d1 = c1 + β4, d2 = c2 + β4τ, d3 = kc1 + β4/Θ0, d4 = kc2 + β4τ 2/Θ0, d5 = c5 − c6ασ, d6 = c2 + β4τ 2, d7 = β4τ + c6ε. Thus, (5.68) becomes ξG(ω) ≤ ( − [ d1 + ( d2 + c4 1 + τ2ω2 1 + α2ω2 ) ω2 + c3ω 4 ] Re ∫ Ω F̂ · Ê∗dx + c5 ω 1 + α2ω2 Im ∫ Ω F̂ · Ê∗dx ) + ( c6 Re ∫ Ω F̂ · ∇ × Ĥ∗dx ) + ( c6ω Im ∫ Ω F̂ · aϑ̂∗dx ) + ([ d1 + ( d2 + c4 1 + τ2ω2 1 + α2ω2 ) ω2 + c3ω 4 + β1 1 1 + α2ω2 ] Re ∫ Ω Ĝ∗ · Ĥdx ) 454 G. AMENDOLA + ( 1 µ Re ∫ Ω Ĝ∗ · ∇ × Êdx ) + ([ d3 + ( d4 + c4 Θ0 1 + τ2ω2 1 + α2ω2 ) ω2 + kc3ω 4 − β1 Θ0 1 1 + α2ω2 ] Re ∫ Ω R̂ϑ̂∗dx + 1 Θ0 ( c6ε+ d5 1 1 + α2ω2 ) ω Im ∫ Ω R̂ϑ̂∗dx ) − ([ 1 + β2ω 2 + ( β4 + c4 ω2 1 + α2ω2 ) 1 + τ2ω2 1 + α2ω2 ] Re ∫ Ω Î · Ê∗dx + [ 1 + β2ω 2 + ( β4 + c4 ω2 1 + α2ω2 ) 1 + τ2ω2 1 + α2ω2 + (c7 + β3ω 2) 1 1 + α2ω2 ] αω Im ∫ Ω Î · Ê∗dx ) + ( 1 σ 1 1 + α2ω2 (c7 + β3ω 2) Re ∫ Ω Î∗ · Ĵdx− [c5 + (c7 + β3ω 2)α]ω Im ∫ Ω Î∗ · Ĵdx  ) + ( c6 1 1 + α2ω2 Re ∫ Ω Î∗ · ∇ × Ĥdx− αω Im ∫ Ω Î∗ · ∇ × Ĥdx ) − ( c6 ω 1 + α2ω2 αωRe ∫ Ω Î∗ · aϑ̂dx + Im ∫ Ω Î∗ · aϑ̂dx ) + ( 1 kΘ0  [ c1 + d6ω 2 + ( c3 + c4τ 2 1 1 + α2ω2 ) ω4 − β1 1 1 + α2ω2 ] Re ∫ Ω Q̂∗ · q̂dx + [ d7 + (d5 + c4τω 2) 1 1 + α2ω2 ] ω Im Q̂∗ · q̂dx }) + ( 1 Θ0 ( β4 + c4 ω2 1 + α2ω2 ) Re ∫ Ω Q̂ · ∇ϑ̂∗dx ) . (5.69) If we denote by the λi,j(ω), i = 1, 2, ..., 12; j = 1, 2, the coefficients of the real (j = 1) and the imaginary (j = 2) parts of the twelve different integrals in (5.69) and consider λ(ω) = 1 ξ max {|λi,1(ω)|+ |λi,2(ω)| , i = 1, 2, . . . , 12} , (5.70) from (5.69) with applications of Schwarz’s inequality it follows that G(ω) ≤ 12λ(ω)max {1, |a|} ∫ Ω (∣∣∣F̂∣∣∣2 + ∣∣∣Ĝ∣∣∣2 + ∣∣∣̂I∣∣∣2 + ∣∣∣Q̂∣∣∣2 + ∣∣∣R̂∣∣∣2) dx 1/2 G1/2(ω) (5.71) and hence (5.32). ASYMPTOTIC STABILITY FOR A THERMOELECTROMAGNETIC MATERIAL 455 Lemma 5.2. If the sources (F,G, I,Q, R) ∈ V ′(Ω,R+), the hypotheses there stated assure that the inverse Fourier transforms of (Ê, Ĥ, Ĵ, q̂, ϑ̂) ∈ Ĥ (Ω,R) exist and are L2-functions with zero initial data. Proof. Since the 5-tuple (F,G, I,Q, R) ∈ V ′(Ω,R+), the hypotheses assumed on the sources together with the form of ν(ω), which is a continuous function of ω ∈ R and ap- proaches infinity as ω4, allow us to integrate over R the right-hand side of (5.32), i.e., +∞∫ −∞ ∫ Ω ν2(ω) (∣∣∣F̂∣∣∣2 + ∣∣∣Ĝ∣∣∣2 + ∣∣∣̂I∣∣∣2 + ∣∣∣Q̂∣∣∣2 + ∣∣∣R̂∣∣∣2) dxdω < +∞. (5.72) Thus, from the inequality (5.32) it follows that +∞∫ −∞ G(ω)dω = 2π‖(Ê(x, ω), Ĥ(x, ω), Ĵ(x, ω), q̂(x, ω), ϑ̂(x, ω))‖2 Ĥ ≤ +∞∫ −∞ ∫ Ω ν2(ω) (∣∣∣F̂∣∣∣2 + ∣∣∣Ĝ∣∣∣2 + ∣∣∣̂I∣∣∣2 + ∣∣∣Q̂∣∣∣2 + ∣∣∣R̂∣∣∣2) dxdω, (5.73) whence, by virtue of Plancherel’s theorem, the inverse Fourier transforms of (Ê, Ĥ, Ĵ, q̂, ϑ̂) exist. From the linearity of system (5.11) – (5.15) and inequality (5.32) of Lemma 5.1 we have this corollary. Corollary 5.1. Let (F̂(i), Ĝ(i), Î(i), Q̂(i), R̂(i)), i = 1, 2, be two source fields. The correspond- ing solutions of our problem (Ê(i), Ĥ(i), Ĵ(i), q̂(i), ϑ̂(i)) satisfy 2π ∥∥∥(Ê(1) − Ê(2), Ĥ(1) − Ĥ(2), Ĵ(1) − Ĵ(2), q̂(1) − q̂(2), ϑ̂(1) − ϑ̂(2)) ∥∥∥2 Ĥ ≤ +∞∫ −∞ ∫ Ω ν2(ω) (∣∣∣F̂(1) − F̂(2) ∣∣∣2 + ∣∣∣Ĝ(1) − Ĝ(2) ∣∣∣2 + ∣∣∣̂I(1) − Î(2) ∣∣∣2 + ∣∣∣Q̂(1) − Q̂(2) ∣∣∣2 + ∣∣∣R̂(1) − R̂(2) ∣∣∣2) dxdω. (5.74) Lemma 5.3. The subset Sa = { (F̂, Ĝ, Î, Q̂, R̂) ∈ V̂ ′(Ω,R) : ∃ (Ê, Ĥ, Ĵ, q̂, ϑ̂) ∈ Ĥ (Ω,R) which satisfies (5.10) ∀(ê, ĥ, û, v̂, β̂) ∈ Ŵ (Ω,R) } (5.75) is dense and closed in V̂ ′(Ω,R). 456 G. AMENDOLA Proof. To prove that Sa is dense we suppose that there is a nonzero element (F̂0, Ĝ0, Î0, Q̂0, R̂0) ∈ V̂ ′(Ω,R)\S̄a, S̄a being the closure of Sa in V̂ ′(Ω,R). We use the Hahn – Banach theorem, which states that there exists (ê0, ĥ0, û0, v̂0, β̂0) ∈ Ŵ (Ω,R) which satisfies these relations 〈(F̂0, Ĝ0, Î0, Q̂0, R̂0), (ê0, ĥ0, û0, v̂0, β̂0)〉 6= 0, 〈(F̂, Ĝ, Î, Q̂, R̂), (ê0, ĥ0, û0, v̂0, β̂0)〉 = 0 ∀(F̂, Ĝ, Î, Q̂, R̂) ∈ Sa. (5.76) The second condition is equivalent to Λ[(Ê, Ĥ, Ĵ, q̂, ϑ̂), (ê0, ĥ0, û0, v̂0, β̂0)] = 0 ∀(Ê, Ĥ, Ĵ, q̂, ϑ̂) ∈ Ĥ (Ω,R) (5.77) because of (5.18), whence it follows that (ê0, ĥ0, û0, v̂0, β̂0) = 0, (5.78) which does not satisfies (5.76). Hence, Sa is dense in V̂ ′(Ω,R). To show the closure of Sa in V̂ ′(Ω,R) we consider a sequence of sources, which is denoted by { (F̂(n), Ĝ(n), Î(n), Q̂(n), R̂(n)) ∈ Sa, n = 1, 2, ... } and assumed convergent to (F̂, Ĝ, Î, Q̂, R̂) ∈ V̂ ′(Ω,R) . Denoting by (Ê(n), Ĥ(n), Ĵ(n), q̂(n), ϑ̂(n)) ∈ Ĥ (Ω,R) the corresponding solutions, we con- sider (5.74) of Corollary 5.1, which gives∥∥∥(Ê(n) − Ê(m), Ĥ(n) − Ĥ(m), Ĵ(n) − Ĵ(m), q̂(n) − q̂(m), ϑ̂(n) − ϑ̂(m)) ∥∥∥2 Ĥ ≤ 1 2π +∞∫ −∞ ∫ Ω ν2(ω) (∣∣∣F̂(n) − F̂(m) ∣∣∣2 + ∣∣∣Ĝ(n) − Ĝ(m) ∣∣∣2 + ∣∣∣̂I(n) − Î(m) ∣∣∣2 + ∣∣∣Q̂(n) − Q̂(m) ∣∣∣2 + ∣∣∣R̂(n) − R̂(m) ∣∣∣2) dxdω, (5.79) whence it follows that { (Ê(n), Ĥ(n), Ĵ(n), q̂(n), ϑ̂(n)), n = 1, 2, ... } is a Cauchy sequence and the completeness of the space gives lim n→+∞ (Ê(n), Ĥ(n), Ĵ(n), q̂(n), ϑ̂(n)) = (Ê, Ĥ, Ĵ, q̂, ϑ̂) ∈ Ĥ (Ω,R). (5.80) Thus, it is enough to consider the sequence of identities obtained by substituting the so- lutions (Ê(n), Ĥ(n), Ĵ(n), q̂(n), ϑ̂(n)) and the sources (F̂(n), Ĝ(n), Î(n), Q̂(n), R̂(n)) into (5.18); the limit of these identities as n → +∞, consists of a similar identity in terms of the limits (Ê, Ĥ, Ĵ, q̂, ϑ̂) and (F̂, Ĝ, Î, Q̂, R̂); therefore, we conclude that (F̂, Ĝ, Î, Q̂, R̂) ∈ Sa. The application of the Plancherel theorem yields the existence of (E,H,J,q, ϑ) ∈ H (Ω,R+), which is the solution of our problem. Thus, the proof of Theorem 5.1 is complete. ASYMPTOTIC STABILITY FOR A THERMOELECTROMAGNETIC MATERIAL 457 REFERENCES 1. Coleman B.D. and Dill E.H. “Thermodynamic restrictions on the constitutive equations of electromagnetic theory,” ZAMP, 22, 691 – 702 (1971). 2. Coleman B.D. and Dill E.H. “On the Thermodynamics of electromagnetic fields in materials with memory,” Arch. Ration. Mech. and Anal., 41, 132 – 162 (1971). 3. Amendola G. “Linear stability for a thermoelectromagnetic material with memory,” Quart. Appl. Math., 1, 67 – 84 (2001). 4. Noll W. “A new mathematical theory of simple materials,” Arch. Ration. Mech. and Anal., 48, 1 – 50 (1972). 5. Coleman B.D. and Owen D.R. “A mathematical foundation of Thermodynamics,” Arch. Ration. Mech. and Anal., 54, 1 – 104 (1974). 6. Cattaneo C. “Sulla conduzione del calore,” Atti Sem. Mat. Fis. Univ. Modena, 3, 83 – 101(1948). 7. Fabrizio M., Lazzari B., and Muñoz Rivera J.E. “Asymptotic behavior in linear thermoelasticity,” J. Math. Anal. and Appl., 232, 138 – 165 (1999). 8. Bykhousekis E.B. and Smirnov N.V. “On the orthogonal decomposition of the space of vector functions square summable in a given domain,” Tr. Mat. Inst. Steklov, 59, 6 – 36 (1960). Received 17.10.2001