Chaotifying 2-D piecewise linear maps via a piecewise linear controller function

A simple method for chaotifying piecewise linear maps of the plane using a piecewise linear controller function is given. A domain of chaosin the resulting controlled map was determined exactly and rigorously.

Gespeichert in:
Bibliographische Detailangaben
Datum:2010
Hauptverfasser: Elhadj, Z., Sprott, J.C.
Format: Artikel
Sprache:English
Veröffentlicht: Інститут математики НАН України 2010
Schriftenreihe:Нелінійні коливання
Online Zugang:http://dspace.nbuv.gov.ua/handle/123456789/174949
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Chaotifying 2-D piecewise linear maps via a piecewise linear controller function / Z. Elhadj, J.C. Sprott // Нелінійні коливання. — 2010. — Т. 13, № 3. — С. 328-335. — Бібліогр.: 22 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-174949
record_format dspace
spelling irk-123456789-1749492021-01-29T01:27:38Z Chaotifying 2-D piecewise linear maps via a piecewise linear controller function Elhadj, Z. Sprott, J.C. A simple method for chaotifying piecewise linear maps of the plane using a piecewise linear controller function is given. A domain of chaosin the resulting controlled map was determined exactly and rigorously. Наведено простий метод хаотизацiї кусково-лiнiйних вiдображень площини за допомогою кусково-лiнiйної функцiї керування. Множину хаосу для отриманого керованого вiдображення визначено точно i строго. 2010 Article Chaotifying 2-D piecewise linear maps via a piecewise linear controller function / Z. Elhadj, J.C. Sprott // Нелінійні коливання. — 2010. — Т. 13, № 3. — С. 328-335. — Бібліогр.: 22 назв. — англ. 1562-3076 http://dspace.nbuv.gov.ua/handle/123456789/174949 517.9 en Нелінійні коливання Інститут математики НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description A simple method for chaotifying piecewise linear maps of the plane using a piecewise linear controller function is given. A domain of chaosin the resulting controlled map was determined exactly and rigorously.
format Article
author Elhadj, Z.
Sprott, J.C.
spellingShingle Elhadj, Z.
Sprott, J.C.
Chaotifying 2-D piecewise linear maps via a piecewise linear controller function
Нелінійні коливання
author_facet Elhadj, Z.
Sprott, J.C.
author_sort Elhadj, Z.
title Chaotifying 2-D piecewise linear maps via a piecewise linear controller function
title_short Chaotifying 2-D piecewise linear maps via a piecewise linear controller function
title_full Chaotifying 2-D piecewise linear maps via a piecewise linear controller function
title_fullStr Chaotifying 2-D piecewise linear maps via a piecewise linear controller function
title_full_unstemmed Chaotifying 2-D piecewise linear maps via a piecewise linear controller function
title_sort chaotifying 2-d piecewise linear maps via a piecewise linear controller function
publisher Інститут математики НАН України
publishDate 2010
url http://dspace.nbuv.gov.ua/handle/123456789/174949
citation_txt Chaotifying 2-D piecewise linear maps via a piecewise linear controller function / Z. Elhadj, J.C. Sprott // Нелінійні коливання. — 2010. — Т. 13, № 3. — С. 328-335. — Бібліогр.: 22 назв. — англ.
series Нелінійні коливання
work_keys_str_mv AT elhadjz chaotifying2dpiecewiselinearmapsviaapiecewiselinearcontrollerfunction
AT sprottjc chaotifying2dpiecewiselinearmapsviaapiecewiselinearcontrollerfunction
first_indexed 2025-07-15T12:05:10Z
last_indexed 2025-07-15T12:05:10Z
_version_ 1837714491231436800
fulltext UDC 517 . 9 CHAOTIFYING 2-D PIECEWISE LINEAR MAPS VIA A PIECEWISE LINEAR CONTROLLER FUNCTION ХАОТИЗАЦIЯ ДВОВИМIРНИХ КУСКОВО-ЛIНIЙНИХ ВIДОБРАЖЕНЬ ЗА ДОПОМОГОЮ КУСКОВО-ЛIНIЙНОЇ ФУНКЦIЇ КЕРУВАННЯ Z. Elhadj Univ. Tébéssa (12000), Algeria e-mail: zeraoulia@mail.univ-tebessa.dz zelhadj12@yahoo.fr. J. C. Sprott Univ. Wisconsin Madison, WI 53706, USA e-mail: sprott@physics.wisc.edu. A simple method for chaotifying piecewise linear maps of the plane using a piecewise linear controller function is given. A domain of chaos in the resulting controlled map was determined exactly and rigorously. Наведено простий метод хаотизацiї кусково-лiнiйних вiдображень площини за допомогою кус- ково-лiнiйної функцiї керування. Множину хаосу для отриманого керованого вiдображення ви- значено точно i строго. 1. Introduction. A large number of physical and engineering systems have been found to be governed by a class of continuous or discontinuous maps [1, 4, 5, 7 – 10, 13, 14] where the discrete-time state space is divided into two or more compartments with different functional forms of the map separated by borderlines [14 – 17]. The theory of discontinuous maps is in its infancy, with some progress reported for 1-D and n-D discontinuous maps in [1, 8, 9, 11, 12, 17], but these results are restrictive and cannot be obtained in the general n-dimensional context [12]. On the other hand, there are many works that focus on the chaotic behavior of discrete mappings. For example, they have been studied as control and anti-control (chaoti- fication) schemes using Lyapunov exponents [2, 3, 18, 20] to prove the existence of chaos in n-dimensional discrete dynamical systems with the goal of making in some way an originally non-chaotic dynamical system chaotic or enhancing the chaos already existing in such a system. The goal of this work is to present a simple method for chaotifying an arbitrary 2-D piecewi- se linear map (continuous or not) using a simple piecewise linear controller function, which allows one to determine exactly and rigorously which portion of the bifurcation parameter space is characterized by the occurrence of chaos in the resulting controlled map using the standard definition of the Lyapunov exponents as the test for chaos. Consider an arbitrary piecewise-linear map f : D → D, where D = D1∪D2 ⊂ R 2, defined by c© Z. Elhadj, J. C. Sprott, 2010 328 ISSN 1562-3076. Нелiнiйнi коливання, 2010, т . 13, N◦ 3 CHAOTIFYING 2-D PIECEWISE LINEAR MAPS VIA A PIECEWISE LINEAR CONTROLLER FUNCTION 329 Xk+1 = f (Xk) = { AXk + b if Xk ∈ D1, BXk + c if Xk ∈ D2, (1) where A = ( a11 a12 a21 a22 ) and B = ( b11 b12 b21 b22 ) are 2× 2 real matrices, and b = ( b1 b2 ) and c = ( c1 c2 ) are 2× 1 real vectors, and Xk = ( xk yk ) ∈ R 2 is the state variable. The Lyapunov exponents of a 2-D dynamical system are defined as follows. Let us consider the system Xk+1 = f(Xk), Xk ∈ R 2, k = 0, 1, 2, . . . , (2) where the function f : R2 −→ R 2 is the vector field associated with system (2). Let J (Xk) be its Jacobian evaluated at Xk ∈ R 2, k = 0, 1, 2, . . . , and define the matrix Tn (X0) = J (Xn−1) J (Xn−2) . . . J (X1) J (X0) . (3) Moreover, let Ji(X0, n) be the modulus of the ith eigenvalue of the nth matrix Tn (X0) , where i = 1, 2 and n = 0, 1, 2, . . . . Now, the Lyapunov exponents for a two-dimensional discrete-time system are defined by li (X0) = lim n−→+∞ ln ( Ji(X0, n) 1 n ) , i = 1, 2. (4) Roughly speaking, chaotic behavior implies sensitive dependence on initial conditions, with at least one positive Lyapunov exponent. Based on this definition, we give in the next section a rigorous proof of chaos in the resulting controlled map (7) obtained below via a simple piecewi- se linear controller function applied to the map (1). While many algorithms for calculating the Lyapunov exponents would give spurious results for piecewise-linear discontinuous maps, the algorithm used here and given in [21] works for such cases. It essentially takes a numerical derivative and gives the correct result provided that is taken to ensure that the perturbed and unperturbed orbits lie on the same side of the discontinuity. This may require an occasional small perturbation into a region that is not strictly accessible to the orbit. 2. The chaotification method using a piecewise linear controller function. The main idea of the chaotification method presented in this work is to introduce a piecewise linear controller function in such a way, such that the two (in both partitions) system matrices of the resulting controlled piecewise linear system have the same trace and determinant (invariants) and hence the same eigenvalues. Indeed, the controlled map is given by g (Xk) = { AXk + b if Xk ∈ D1 BXk + c if Xk ∈ D2 + U (Xk) , (5) ISSN 1562-3076. Нелiнiйнi коливання, 2010, т . 13, N◦ 3 330 Z. ELHADJ, J. C. SPROTT where the controller function U (Xk) is defined by U (Xk) =                    (b11 + b22 − a11 − a22)xk (−a12a21 + b11a22 − b11b22 + b12b21 + a22b22 − a222 a12 ) xk     if Xk ∈ D1, ( 0 0 ) if Xk ∈ D2. (6) The controlled system (5) is now given by g (Xk) = { QXk + b if Xk ∈ D1, BXk + c if Xk ∈ D2, (7) where the matrix Q is given by Q =     b11 + b22 − a22 a12 b11a22 − b11b22 + b12b21 + a22b22 − a222 a12 a22     . (8) The Jacobian matrix of the controlled map (7) is given by J (Xk) = { Q if Xk ∈ D1, B if Xk ∈ D2. (9) It is shown in [22] that if we consider a system xk+1 = f (xk) , xk ∈ Ω ⊂ R n, such that ∥ ∥f ′(x) ∥ ∥ = √ λmax (f(x)T f(x)) ≤ N < +∞, (10) with a smallest eigenvalue of f(x)T f(x) that satisfies λmin ( f ′(x)T f ′(x) ) ≥ θ > 0, (11) where N2 ≥ θ, then, for any x0 ∈ Ω, all the Lyapunov exponents at x0 are located inside [ ln θ 2 , lnN ] , that is, ln θ 2 ≤ li (x0) ≤ lnN, i = 1, 2, . . . , n, (12) where li (x0) are the Lyapunov exponents for the map f and ‖·‖ is the Euclidian norm in R n. We remark that J (Xk) given in (9) is not well-defined due to the discontinuity, but, since B and Q have the same eigenvalues, one has that ‖Q‖ = ‖B‖ = √ λmax (BTB). Because BTB =   b211 + b221 b11b12 + b21b22 b11b12 + b21b22 b212 + b222   ISSN 1562-3076. Нелiнiйнi коливання, 2010, т . 13, N◦ 3 CHAOTIFYING 2-D PIECEWISE LINEAR MAPS VIA A PIECEWISE LINEAR CONTROLLER FUNCTION 331 is at least a positive semi-definite matrix, all its eigenvalues are real and positive, i.e., λmax ( BTB ) ≥ λmin ( BTB ) ≥ 0. Hence the eigenvalues of BTB are given by λmax ( BTB ) = 1 2 b211 + 1 2 b212 + 1 2 b221 + 1 2 b222 + 1 2 √ d, (13) λmin ( BTB ) = 1 2 b211 + 1 2 b212 + 1 2 b221 + 1 2 b222 − 1 2 √ d, where d = ( (b11 + b22) 2 + (b12 − b21) 2 )( (b12 + b21) 2 + (b11 − b22) 2 ) > 0 (14) for all b11, b12, b21, and b22. Condition (10) gives ‖f ′(x)‖ = ‖B‖ = ‖Q‖ = √ λmax (BTB) = = N < +∞, because B and Q have the same eigenvalues. Condition (11) gives the inequality θ2 − ( b211 + b212 + b221 + b222 ) θ + (b11b22 − b12b21) 2 ≥ 0 (15) with the condition θ < b211 + b212 + b221 + b222 2 . (16) Since the discriminant of (15) is equal to d > 0, (11) holds if θ ≥ λmax ( BTB ) , or θ ≤ λmin ( BTB ) . (17) The condition θ ≥ λmax ( BTB ) is impossible because of condition (16), so that θ must satisfy the condition θ < λmin ( BTB ) = b211 + b212 + b221 + b222 − √ d 2 . (18) Now, if 2 < b211 + b212 + b221 + b222 < (b11b22 − b12b21) 2 + 1, (19) |b11b22 − b12b21| > 1, then λmin ( BTB ) > 1, i.e., θ = 1, and one has 0 < li (x0) ≤ lnN, i = 1, 2, (20) i.e., the controlled map (7) converges to a hyperchaotic attractor for all parameters b11, b12, b21, and b22 satisfying (19). Finally, the following theorem is proved. ISSN 1562-3076. Нелiнiйнi коливання, 2010, т . 13, N◦ 3 332 Z. ELHADJ, J. C. SPROTT Theorem 1. The piecewise linear controller function (6) makes the map (1) chaotic in the following case: 2 < b211 + b212 + b221 + b222 < (b11b22 − b12b21) 2 + 1, (21) |b11b22 − b12b21| > 1. Finally, we note that Theorem 1 does not guaranty the boundness of the resulting controlled map (7). This problem is still open for general piecewise-linear maps and flows. 3. Example. In this section, we make chaotic the following piecewise linear map using the above method: f (xk, yk) =            ( xk − αyk + 1, γxk ) if yk ≥ 0, ( xk + αyk + 1 −βxk ) if yk < 0, (22) where α, β, and γ are bifurcation parameters. The map (22) is a special case of the map (1) since one can rewrite it as f (Xk) = { AXk + b, if yk ≥ 0, BXk + c, if yk < 0, where A = ( 1 −α γ 0 ) , B = ( 1 α −β 0 ) , and b = c = ( 1 0 ) , and the two sub regions are D1 = { (xk, yk) ∈ R 2/ yk ≥ 0 } and D2 = { (xk, yk) ∈ R 2/ yk < 0 } . Thus, the resulting controlled map is given by g (xk, yk) =            ( 1 −α β 0 )( xk yk ) + ( 1 0 ) if yk ≥ 0 ( 1 α −β 0 )( xk yk ) + ( 1 0 ) if yk < 0 =   1− α |yk|+ xk βxk sgn (yk)   , (23) which is the so-called discrete butterfly presented in [19], where sgn (·) is the standard signum function that gives ±1 depending on the sign of its argument. For the controlled map (23), condition (21) becomes |α| > max ( |β| √ β2 − 1 , 1 |β| ) , |β| > 1. (24) ISSN 1562-3076. Нелiнiйнi коливання, 2010, т . 13, N◦ 3 CHAOTIFYING 2-D PIECEWISE LINEAR MAPS VIA A PIECEWISE LINEAR CONTROLLER FUNCTION 333 For illustration, assume that β < −1. Then we remark that |β| √ β2 − 1 = −β √ β2 − 1 < 1 |β| = −1 β , and thus conditions (24) become |α| > −1 β , β < −1. Using the obtained analytical results, Fig. 1 shows that for −2 ≤ β < −1, and −0.1 − − 1 β < α < −1 β + 0.4, the controlled map (23) converges to bounded hyperchaotic attractors or unbounded orbits for α > − 1 β . In this figure, unbounded solutions, periodic solutions, and chaotic solutions are shown in the αβ-plane for the controlled map (23), where we use 5000 different initial conditions and 106 iterations for each point. A chaotic attractor for the case with α = 0.6 and β = −2 is shown in Fig 2. On the other hand, it is necessary to verify the hyperchaoticity of the attractors by calcula- ting both Lyapunov exponents using the formula: l1 (x0) + l2 (x0) = ln | det(J)| = ln |αβ| averaged along the orbit where det(J) is the determinant of the Jacobian matrix. The result is shown in Fig. 3 for 0.4 ≤ α ≤ 0.9, with β = −2. Fig. 1. Regions of dynamical behaviors in the αβ-plane for the controlled map (23) with −2 ≤ β < −1 and −0.1− 1/β < α < −1/β + 0.4. ISSN 1562-3076. Нелiнiйнi коливання, 2010, т . 13, N◦ 3 CHAOTIFYING 2-D PIECEWISE LINEAR MAPS VIA A PIECEWISE LINEAR CONTROLLER FUNCTION 335 4. Conclusion. A new simple chaotification method for piecewise linear maps of the plane via a piecewise linear controller function was presented. A rigorous proof of chaos in the resulti- ng controlled map using the standard definition of the largest Lyapunov exponent was also given. 1. Sharkovsky A. N., Chua L. O. Chaos in some 1-D discontinuous maps that appear in the analysis of electrical circuits // IEEE Trans. Circuits and Syst. — 1993. — 40. — P. 722 – 731. 2. Li C. On super-chaotifying discrete dynamical systems // Chaos, Solitons and Fractals. — 2004. — 21. — P. 855 – 861. 3. Chen G., Lai D. Making a discrete dynamical system chaotic: feedback control of Lyapunov exponents for discrete-time dynamical system // IEEE Trans. Circuits and Syst.-I. — 1997. — 44. — P. 250 – 253. 4. Yuan G. H., Banerjee S., Ott E., Yorke J. A. Border collision bifurcations in the buck converter // IEEE Trans. Circuits and Systems-I. — 1998. — 45. — P. 707 – 716. 5. Maggio G. M., di Bernardo M., Kennedy M. P. Nonsmooth bifurcations in a piecewise-linear model of the colpitts oscillator // IEEE Trans. Circuits and Syst.-I. — 2000. — 8. — P. 1160 – 1177. 6. Kollar L. E., Stepan G., Turi J. Dynamics of piecewise linear discontinuous maps // Int. J. Bifurcation and Chaos. — 2004. — 14. — P. 2341 – 2351. 7. Chua L. O., Lin T. Chaos in digital filters // IEEE Trans. Circuits and Syst. — 1988. — 35. — P. 648 – 658. 8. Ogorzalek M. J. Complex behavior in digital filters // Int. J. Bifurcation and Chaos. — 1992. — 2, № 1. — P. 11 – 29. 9. Feely O., Chua L. O. Nonlinear dynamics of a class of analog-to-digital converters // Int. J. Bifurcation and Chaos. — 1992. — 22. — P. 325 – 340. 10. Feely O., Chua L. O. The effect of integrator leak in modulation // IEEE Trans. Circuits and Syst-I. — 1991. — 38. — P. 1293 – 1305. 11. Jain P., Banerjee S. Border collision bifurcations in one-dimensional discontinuous maps // Int. J. Bifurcation and Chaos. — 2003. — 13. — P. 3341 – 3352. 12. Dutta P. S., Routroy B., Banerjee S., Alam S. S. Border collision bifurcations in n-dimensional piecewise linear discontinuous maps // Chaos (to appear). 13. Rajaraman R., Dobson I., Jalali S. Nonlinear dynamics and switching time bifurcations of a thyristor controlled reactor circuit // IEEE Trans. Circuits and Syst.-I. — 1996. — 43. — P. 1001 – 1006. 14. Banerjee S., Verghese G. C. (Ed.) Nonlinear phenomena in power electronics: attractors, bifurcations, chaos, and nonlinear control. — New York: IEEE Press, 2001. 15. Banerjee S., Ott E., Yorke J. A., Yuan G. H. Anomalous bifurcations in dc-dc converters: borderline collisions in piecewise smooth maps // IEEE Power Electron. Special. Conf. — 1997. — P. 13 – 37. 16. Banerjee S., Parui S., Gupta A. Dynamical effects of missed switching in current-mode controlled dc-dc converters // IEEE Trans. Circuits and Syst.-II. — 2004. — 51. — P. 649 – 654. 17. Tse T. K. Complex behavior of switching power converters. — Boca Raton: CRC Press, 2003. 18. Wang X. F., Chen G. On feedback anticontrol of discrete chaos // Int. J. Bifurcation and Chaos. — 1999. — 9. — P. 1435 – 1441. 19. Elhadj Z. The discrete Butterfly // Chaos, Solitons and Fractals (to appear). 20. Li Z., Park J. B., Joo Y. H., Choi Y. H., Chen G. Anticontrol of chaos for discrete TS fuzzy systems // IEEE Trans. Circuits and Syst.-I. — 2002. — 49. — P. 249 – 253. 21. Sprott J. C. Chaos and time-series analysis. — Oxford: Oxford Univ. Press, 2003. 22. Li C., Chen G. Estimating the Lyapunov exponents of discrete systems // Chaos. — 2000. — 14, № 2. — P. 343 – 346. Received 09.12.08, after revision — 15.04.09 ISSN 1562-3076. Нелiнiйнi коливання, 2010, т . 13, N◦ 3