Classical solutions of hyperbolic IBVPs with state dependent delays

We consider the initial boundary-value problem for a system of quasilinear partial functional differential equations of the first order. Using the method of bicharacteristics and the fixed-point theorem we prove the local existence, uniqueness and continuous dependence on data of classical solutio...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2010
Автор: Czernous, W.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2010
Назва видання:Нелінійні коливання
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/174970
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Classical solutions of hyperbolic IBVPs with state dependent delays / W. Czernous // Нелінійні коливання. — 2010. — Т. 13, № 4. — С. 556-573. — Бібліогр.: 13 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-174970
record_format dspace
spelling irk-123456789-1749702021-01-30T01:26:56Z Classical solutions of hyperbolic IBVPs with state dependent delays Czernous, W. We consider the initial boundary-value problem for a system of quasilinear partial functional differential equations of the first order. Using the method of bicharacteristics and the fixed-point theorem we prove the local existence, uniqueness and continuous dependence on data of classical solutions of the problem. Розглядається гранична задача з початковими даними для системи квазiлiнiйних функцiонально-диференцiальних рiвнянь з частинними похiдними першого порядку. З допомогою методу бiфуркацiй та теореми про нерухому точку доведено локальне iснування класичних розв’язкiв задачi, їх єдинiсть та неперервну залежнiсть вiд даних 2010 Article Classical solutions of hyperbolic IBVPs with state dependent delays / W. Czernous // Нелінійні коливання. — 2010. — Т. 13, № 4. — С. 556-573. — Бібліогр.: 13 назв. — англ. 1562-3076 http://dspace.nbuv.gov.ua/handle/123456789/174970 517.9 en Нелінійні коливання Інститут математики НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description We consider the initial boundary-value problem for a system of quasilinear partial functional differential equations of the first order. Using the method of bicharacteristics and the fixed-point theorem we prove the local existence, uniqueness and continuous dependence on data of classical solutions of the problem.
format Article
author Czernous, W.
spellingShingle Czernous, W.
Classical solutions of hyperbolic IBVPs with state dependent delays
Нелінійні коливання
author_facet Czernous, W.
author_sort Czernous, W.
title Classical solutions of hyperbolic IBVPs with state dependent delays
title_short Classical solutions of hyperbolic IBVPs with state dependent delays
title_full Classical solutions of hyperbolic IBVPs with state dependent delays
title_fullStr Classical solutions of hyperbolic IBVPs with state dependent delays
title_full_unstemmed Classical solutions of hyperbolic IBVPs with state dependent delays
title_sort classical solutions of hyperbolic ibvps with state dependent delays
publisher Інститут математики НАН України
publishDate 2010
url http://dspace.nbuv.gov.ua/handle/123456789/174970
citation_txt Classical solutions of hyperbolic IBVPs with state dependent delays / W. Czernous // Нелінійні коливання. — 2010. — Т. 13, № 4. — С. 556-573. — Бібліогр.: 13 назв. — англ.
series Нелінійні коливання
work_keys_str_mv AT czernousw classicalsolutionsofhyperbolicibvpswithstatedependentdelays
first_indexed 2025-07-15T12:06:26Z
last_indexed 2025-07-15T12:06:26Z
_version_ 1837714570505879552
fulltext UDC 517 . 9 CLASSICAL SOLUTIONS OF HYPERBOLIC IBVPS WITH STATE DEPENDENT DELAYS КЛАСИЧНI РОЗВ’ЯЗКИ ГIПЕРБОЛIЧНИХ ГРАНИЧНИХ ЗАДАЧ IЗ ПОЧАТКОВИМИ ДАНИМИ ТА ЗАПIЗНЕННЯМ, ЩО ЗАЛЕЖИТЬ ВIД СТАНУ W. Czernous Inst. Math. Univ. Gdańsk Wit Stwosz Street 57 80-952 Gdańsk, Poland We consider the initial boundary-value problem for a system of quasilinear partial functional differential equations of the first order, ∂tzi(t, x) + n∑ j=1 ρij(t, x, V (z; t, x))∂xjzi(t, x) = Gi(t, x, V (z; t, x)), 1 ≤ i ≤ m, where V is a nonlinear operator of Volterra type, mapping bounded (w.r.t. seminorm) subsets of the space of Lipschitz-continuously differentiable functions, into bounded subsets of this space. Using the method of bicharacteristics and the fixed-point theorem we prove the local existence, uni- queness and continuous dependence on data of classical solutions of the problem. This approach covers systems of the form ∂tzi(t, x) + n∑ j=1 ρij(t, x, zψ(t,x,z(t,x)))∂xj zi(t, x) = Gi(t, x, zψ(t,x,z(t,x))), 1 ≤ i ≤ m, where (t, x) 7→ z(t,x) is the Hale operator, and all the components of ψ may depend on (t, x, z(t,x)). More specifically, problems with deviating arguments and integro-differential systems are included. Розглядається гранична задача з початковими даними для системи квазiлiнiйних функцiональ- но-диференцiальних рiвнянь з частинними похiдними першого порядку ∂tzi(t, x) + n∑ j=1 ρij(t, x, V (z; t, x))∂xj zi(t, x) = Gi(t, x, V (z; t, x)), 1 ≤ i ≤ m, де V — нелiнiйний оператор типу Вольтерра, що вiдображає обмеженi вiдносно семiнорми пiд- множини простору диференцiйовних функцiй, похiдна яких задовольняє умову Лiпшиця, в обме- женi пiдмножини цього простору. З допомогою методу бiфуркацiй та теореми про нерухому точку доведено локальне iснуван- ня класичних розв’язкiв задачi, їх єдинiсть та неперервну залежнiсть вiд даних. c© W. Czernous, 2010 556 ISSN 1562-3076. Нелiнiйнi коливання, 2010, т . 13, N◦ 4 CLASSICAL SOLUTIONS OF HYPERBOLIC IBVPS WITH STATE DEPENDENT DELAYS 557 Цей пiдхiд можна застосувати до систем типу ∂tzi(t, x) + n∑ j=1 ρij(t, x, zψ(t,x,z(t,x)))∂xj zi(t, x) = Gi(t, x, zψ(t,x,z(t,x))), 1 ≤ i ≤ m, де (t, x) 7→ z(t,x) — оператор Хейла i всi компоненти ψ можуть залежати вiд (t, x, z(t,x)). Зокре- ма, вiн може бути застосовним до всiх задач з аргументами, що вiдхиляються, та iнтегро- диференцiальних задач. 1. Introduction. We formulate the functional differential problem. Let a > 0, h0 ∈ R+, R+ = = [0,+∞), and b = (b1, . . . , bn) ∈ Rn +, h = (h1, . . . , hn) ∈ Rn + be given. We use the sets E = [0, a]× [−b, b], D = [−h0, 0]× [−h, h]. Let c̄ = (c1, . . . , cn) = b+ h and E0 = [−h0, 0]× [−c̄, c̄], ∂0E = [0, a]× ([−c̄, c̄] \ (−b, b)), Ω = E0 ∪ E ∪ ∂0E. When it does not lead to misunderstading, we write Ut = U ∩ ([−∞, t] × Rn) for U ⊂ R1+n and t ∈ [0, a]. The symbol U◦ denotes the interior of U . For k, l being arbitrary positive integers, we denote by Mk×l the class of all k × l matrices with real elements, and we choose the norms in Rk and Mk×l to be ∞-norms: ‖y‖ = ‖y‖∞ = max1≤i≤k |yi| and ‖A‖ = ‖A‖∞ = = max1≤i≤k ∑l j=1 |aij |, respectively, where A = [aij ]i=1,...,k,j=1,...,l. The product of two matri- ces is denoted by “∗”. For U ⊂ R1+n and a normed space Y , equipped with the norm ‖ · ‖Y , we define C(U, Y ) to be the set of all continuous functions w : U → Y ; this space is equipped with the usual supremum norm ‖w‖C(U,Y ) = supP∈U ‖w(P )‖Y . We write it simply C(U) when no confusion can arise. Put X = C(D,Rm). Let V : C(Ω,Rm) × E → X , in variables (z; t, x), be a nonlinear Volterra operator. By the Volterra property we mean that for z, z̄ ∈ C(Ω,Rm) and t ∈ [0, a], z ∣∣∣ Ωt ≡ z̄ ∣∣∣ Ωt implies V (z; τ, x) ≡ V (z̄; τ, x) for (τ, x) ∈ Et. Let ρij , Gi : E ×X → R, 1 ≤ i ≤ m, 1 ≤ j ≤ n, and ϕ : E0 ∪ ∂0E → Rm be given. We consider the hyperbolic functional differential system ∂tzi(t, x) + n∑ j=1 ρij(t, x, V (z; t, x)) ∂xjzi(t, x) = Gi(t, x, V (z; t, x)), 1 ≤ i ≤ m, (1) augmented with the initial boundary condition z(t, x) = ϕ(t, x) (2) on E0 ∪ ∂0E. A function z̃ ∈ C1(Ωc,R), where 0 < c ≤ a, is a classical solution of (1), (2) if it satisfies (1) on Ec and condition (2) holds on E0 ∪ ∂0Ec. ISSN 1562-3076. Нелiнiйнi коливання, 2010, т . 13, N◦ 4 558 W. CZERNOUS Note that different models of the functional dependence in partial equations are used in literature. The first group of results is connected with initial problems for equations ∂tz(t, x) = G(t, x, z, ∂xz(t, x)) (3) where the variable z represents the functional argument. This model is suitable for differential functional inequalities generated by initial problems considered on the Haar pyramid. Exi- stence results for (3) can be characterized as follows: theorems have simple assumptions and their proofs are very natural (see [1, 2]). Unfortunately, a small class of differential functional problems is covered by this theory. There are a lot of papers concerning initial value problems for equations ∂tz(t, x) = H(t, x,W [z](t, x), ∂xz(t, x)) (4) where W is an operator of Volterra type and H is defined on finite-dimensional Euclidean space. The main assumptions in existence theorems for (4) concern the operator W . They are formulated [3, 4] in terms of inequalities for norms in some functional spaces. A new model of a functional dependence is proposed in [5, 6]. Partial equations have the form ∂tz(t, x) = F (t, x, z(t,x), ∂xz(t, x)) (5) where z(t,x) is a functional variable. This model is well-known for ordinary functional differenti- al equations (see, for example, [7 – 9]). It is also very general since equations with deviating variables, integral differential equations, and equations of forms (3) and (4) can be obtained from (5) by specifying the operator F . In the paper we use the model (5). In existence results, concerning partial differential equations with state dependent delays [10 – 12], Carathéodory type or semiclassical solutions were considered and the functional variable was z(ψ0(t),ψ′(t,x,z(t,x))). We deal in this paper with a slightly wider class of deviating functions, admitting functional variable of the form z(ψ0(t,x,z(t,x)),ψ ′(t,x,z(t,x))) and we consider classical solutions of the respective problem. Cases of more (or less) compli- cated deviating functions are also covered by our operator formulation. Delay systems with state dependent delays occur as models for the dynamics of diseases when the mechanism of infection is such that the infectious dosage received by an individual has to reach a threshold before the resistance of the individual is broken down and as a result the individual becomes infectious. A prototype of such model was proposed in [13]. The aim of this paper is to prove a theorem on the existence and continuous dependence of classical solutions to (1), (2). The paper is organized as follows. In Section 2 we prove a result on the existence and regularity of bicharacteristics, having assumed our conditions on the operator V . In the next section, the method of bicharacteristics is used to transform the Cauchy problem into a system of integral equations. A fixed-point equation is constructed. The Section 4 contains the main result. Application of our approach to the systems with state dependent delays is described in the last section. ISSN 1562-3076. Нелiнiйнi коливання, 2010, т . 13, N◦ 4 CLASSICAL SOLUTIONS OF HYPERBOLIC IBVPS WITH STATE DEPENDENT DELAYS 559 2. Bicharacteristics. Let U ⊂ R1+n and k be a positive integer. For z : U → Rk and (t, x) ∈ U , denote ∂xz(t, x) = [∂xjzi(t, x)]i=1,...,k,j=1,...,n ∈Mk×n and ∂z(t, x) = [∂xjzi(t, x)]i=1,...,k,j=0,...,n ∈Mk×(n+1), where ∂x0 ≡ ∂t. For a fixed p ∈ R+, we consider the space C1[p](U,Rk) = { w ∈ C(U,R) : w is continuously differentiable on U◦ and ‖∂w‖C(U◦) ≤ p } . Similarly, for p = (p1, p2) ∈ R2 +, we define C1,L[p](U,Rk) = { w ∈ C1[p1](U,Rk) : |∂w|C0,L(U◦) ≤ p2 } , where |z|C0,L(U) = supP 6=P̄ ;P,P̄∈U ‖z(P )− z(P̄ )‖ · ‖P − P̄‖−1. We denote C1,L(U,Rk) = ⋃ p∈R2 + C1,L[p](U,Rk). We are now able to define the function space, in which we seek the solutions to (1), (2). The symbol C1,L ∂ [p] is short for C1,L[p](E0 ∪ ∂0E,Rm). Given p ∈ R2 +, ϕ ∈ C1,L ∂ [p], and d ∈ R2 + such that dj ≥ pj , j = 1, 2, we set C1,L ϕ,c [d] = { z ∈ C1,L[d](Ωc,Rm) : z ≡ ϕ on E0 ∪ ∂0Ec } . We prove that under suitable assumptions on ρ, G, V , ϕ, on the parameters p, d, and for suffici- ently small c ∈ (0, a], there exists a solution z̄ of problem (1), (2) such that z̄ ∈ C1,L ϕ,c [d]. Let Y stand forC(D,Mm×(n+1)). Write ρi = (ρi1, . . . , ρin), 1 ≤ i ≤ m. For the convenience of calculations, we consider m Fréchet derivatives ∂wρi(t, x, w) ∈ L(X,Rn), 1 ≤ i ≤ m, rather than mn Fréchet derivatives ∂wρij(t, x, w), 1 ≤ i ≤ m, 1 ≤ j ≤ n. We are interested in estimating it in the norm ‖ · ‖L(Y,Mn×(n+1)), since we use the notation ∂wρi(t, x, w)δ = ( ∂wρi(t, x, w)δ0, . . . , ∂wρi(t, x, w)δn ) ∈ Mn×(n+1) (6) for δ ∈ Y , δ = (δ0, . . . , δn), δj ∈ X , 0 ≤ j ≤ n. Assumption H [ρ]. Suppose that ρ : E×X → Mm×n, in the variables (t, x, w), is continuous and 1) the derivatives: ∂xρi(t, x, w) and the Fréchet derivative ∂wρi(t, x, w) exist for (t, x, w) ∈ ∈ E × C1,L(D,Rm), 1 ≤ i ≤ m, 2) for 1 ≤ i ≤ m, ∂xρi and ∂wρi are continuous in t on E × C1,L(D,Rm), 3) there is a non-negative constant A such that, for 1 ≤ i ≤ m, ‖ρi(t, x, w)‖, ‖∂xρi(t, x, w)‖, ‖∂wρi(t, x, w)‖L(Y,Mn×(n+1)) ≤ A on E × C1,L(D,Rm) ISSN 1562-3076. Нелiнiйнi коливання, 2010, т . 13, N◦ 4 560 W. CZERNOUS and ‖∂xρi(t, x, w)− ∂xρi(t, x̄, w̄)‖, ‖∂wρi(t, x, w)− ∂wρi(t, x̄, w̄)‖L(Y,Mn×(n+1)) ≤ A ( ‖x− x̄‖+ ‖w − w̄‖X ) for (t, x, w), (t, x̄, w̄) ∈ E × C1,L(D,Rm), 4) there is κ > 0 such that, for 1 ≤ i ≤ m, 1 ≤ j ≤ n, ρij(t, x, w) < −κ on [0, a]× {bj} × C1,L(D,Rm), ρij(t, x, w) > κ on [0, a]× {−bj} × C1,L(D,Rm). Assumption H [V ]. The operator V : C(Ω,Rm) × E → X is such that for every d ∈ R2 + there are d̄ ∈ R2 +, L ∈ R+ such that: 1) for z ∈ C1[d1](Ω,Rm), (t, x) ∈ E, ‖∂V (z; t, x)‖Y ≤ d̄1, 2) for z ∈ C1,L[d](Ω,Rm) and (t, x), (t, x̄) in E, ‖∂V (z; t, x)‖Y ≤ d̄1, ‖∂V (z; t, x)− ∂V (z; t, x̄)‖Y ≤ d̄2‖x− x̄‖, 3) for every z, z̄ ∈ C1[d1](Ω,Rm) and (t, x) ∈ E, ‖V (z; t, x)− V (z̄; t, x)‖X ≤ L‖z − z̄‖C(Et) . Suppose that ϕ ∈ C1,L ∂ [p] and z ∈ C1,L ϕ,c [d]. For 1 ≤ i ≤ m, and a point (t, x) ∈ Ec, we consider the Cauchy problem η′(τ) = ρi(τ, η(τ), V (z; τ, η(τ))), η(t) = x, (7) and denote by gi[z](·, t, x) = (gi1[z](·, t, x), . . . , gin[z](·, t, x)) its classical solution. This function is the bicharacteristic of the i-th equation of (1), corresponding to z. Let δi[z](t, x) be the left end of the maximal interval on which the bicharacteristic gi[z](·, t, x) is defined. Write Qi[z](τ, t, x) = (τ, gi[z](τ, t, x), V (z; τ, gi[z](τ, t, x))). We prove a lemma on bicharacteristics. Lemma 2.1. Suppose that Assumptions H[ρ], H[V ] are satisfied and let ϕ, ϕ̄ ∈ C1,L ∂ [p] and z ∈ C1,L ϕ,c [d], z̄ ∈ C1,L ϕ̄.c [d], be given. Then, for 1 ≤ i ≤ m, the solutions gi[z](·, t, x) and gi[z̄](·, t, x) exist on intervals [δi[z](t, x), c] and [δi[z̄](t, x), c], respectively, and are unique. If ξ = δi[z](t, x) > 0 then gi[z](ξ, t, x) ∈ ∂0E ∩ E. Moreover, the estimates ‖∂gi[z](τ, t, x)‖ ≤ C, ‖∂gi[z](τ, t, x)− ∂gi[z](τ, t̄, x̄)‖ ≤ Qmax{|t− t̄|, ‖x− x̄‖} (8) ISSN 1562-3076. Нелiнiйнi коливання, 2010, т . 13, N◦ 4 CLASSICAL SOLUTIONS OF HYPERBOLIC IBVPS WITH STATE DEPENDENT DELAYS 561 and ‖gi[z](τ, t, x)− gi[z̄](τ, t, x)‖ ≤ Ā ∣∣∣∣∣ τ∫ t ‖z − z̄‖C(Es) ds ∣∣∣∣∣, (9) |δi[z](t, x)− δi[z̄](t, x)|, ≤ 2Āκ−1 ∣∣∣∣∣ t∫ 0 ‖z − z̄‖C(Es) ds ∣∣∣∣∣ (10) hold with constants depending only on data and on c, d, p : C = (A+ 1)ecB, Q = [(1 + C)B + C̃]ecB, Ā = ALecB, (11) where B = A(1 + d̄1), C̃ = C2cA[(1 + d̄1)2 + d̄2] (12) and d̄ = (d̄1, d̄2) ∈ R2 + is the parameter from Assumption H[V ], corresponding to d. Proof. Let z ∈ C1,L ϕ,c [d]. The existence and uniqueness of solutions of (7) follow from the theorem on classical solutions of initial problems. From another classical theorem on differenti- ation of solutions with respect to the initial data it follows that the derivative ∂gi[z] exists and fulfils the integral equations ∂gi[z](τ, t, x) = [ − ρi(t, x, V (z; t, x)) ∣∣ I ] + + τ∫ t [ ∂xρi(Qi[z](s, t, x)) + ∂wρi(Qi[z](s, t, x))∂V (z; s, gi[z](s, t, x)) ] ∗ ∗ ∂gi[z](s, t, x)ds (13) where [ − ρi(t, x, V (z; t, x)) ∣∣ I ] denotes concatenation of the matrix −ρi(t, x, V (z; t, x)) with the identity matrix. It follows from (13), from Assumptions H[ρ], H[V ] that ∂gi[z](·, t, x) satisfy the integral inequality ‖∂gi[z](τ, t, x)‖ ≤ A+ 1 +B ∣∣∣∣∣ τ∫ t ‖∂gi[z](s, t, x)‖ds ∣∣∣∣∣, and from the Gronwall lemma we get the first estimate in (8). Hence we derive the inequality ‖∂gi[z](τ, t, x)− ∂gi[z](τ, t̄, x̄)‖ ≤ (B + C̃) max{|t− t̄|, ‖x− x̄‖}+ CB|t− t̄|+ +B ∣∣∣∣∣∣ τ∫ t ‖∂gi[z](s, t, x)− ∂gi[z](s, t̄, x̄)‖ds ∣∣∣∣∣∣ ISSN 1562-3076. Нелiнiйнi коливання, 2010, т . 13, N◦ 4 562 W. CZERNOUS which, by the Gronwall lemma, implies that ‖∂gi[z](τ, t, x)− ∂gi[z](τ, t̄, x̄)‖ ≤ Q1 max{|t− t̄|, ‖x− x̄‖}+Q0|t− t̄| ≤ ≤ (Q0 +Q1) max{|t− t̄|, ‖x− x̄‖}, with Q0 = CB exp(cB) and Q1 = (C̃ +B) exp(cB), yielding the second estimate in (8). We now prove (9). The function gi[z](τ, t, x) satisfies the following relation: gi[z](τ, t, x) = x+ τ∫ t ρi(s, gi[z](s, t, x), V (z; s, gi[z](s, t, x)))ds. This leads to ‖gi[z](τ, t, x)− gi[z̄](τ, t, x)‖ ≤ B ∣∣∣∣∣ τ∫ t ‖gi[z](s, t, x)− gi[z̄](s, t, x)‖ds ∣∣∣∣∣+ +AL ∣∣∣∣∣ τ∫ t ‖z − z̄‖C(Es) ds ∣∣∣∣∣. Again from the Gronwall inequality we obtain ‖gi[z](τ, t, x)− gi[z̄](τ, t, x)‖ ≤ AL exp(cB) ∣∣∣∣∣ τ∫ t ‖z − z̄‖C(Es) ds ∣∣∣∣∣, and hence (9). Now we proceed to the proof of (10), fixing (t, x) ∈ Ec and beginning by a local version of the estimate, that is, under the condition that ‖z − z̄‖C(Et) ≤ κ 2(cBĀ+AL) . (14) Since (10) is obvious if both values of δ are zero, we may assume that 0 ≤ δi[z](t, x) < δi[z̄](t, x). Denoting ζ = δi[z̄](t, x), we then have |gij [z̄](ζ, t, x)| = bj for some coordinate j. Let us focus on the case gij [z̄](ζ, t, x) = bj ; the opposite case gij [z̄](ζ, t, x) = −bj is then treated analogously. By virtue of (9) and (14), |ρij(Qi[z](ζ, t, x))− ρij(Qi[z̄](ζ, t, x))| ≤ B‖gi[z](ζ, t, x)− gi[z̄](ζ, t, x)‖+AL‖z − z̄‖C(Et) ≤ ≤ BĀ t∫ 0 ‖z − z̄‖C(Es) ds+AL‖z − z̄‖C(Et) ≤ κ 2 . ISSN 1562-3076. Нелiнiйнi коливання, 2010, т . 13, N◦ 4 CLASSICAL SOLUTIONS OF HYPERBOLIC IBVPS WITH STATE DEPENDENT DELAYS 563 This, together with the condition 4 of Assumption H [ρ] applied to ρij(Qi[z̄](ζ, t, x)), gives ρij(Qi[z](ζ, t, x)) ≤ ρij(Qi[z̄](ζ, t, x))+ + |ρij(Qi[z](ζ, t, x))− ρij(Qi[z̄](ζ, t, x))| < −κ+ κ 2 = −κ 2 . Consequently, ∂tgij [z](ζ, t, x) < −κ 2 < 0, and hence gij [z](·, t, x) is decreasing on the interval (ξ, ζ) for some ξ ∈ [δi[z](t, x), ζ). This fact, and the estimate bj − gij [z](ζ, t, x) = gij [z̄](ζ, t, x)− gij [z](ζ, t, x) ≤ ≤ cĀ‖z − z̄‖C(Et) ≤ κcĀ 2(cBĀ+AL) ≤ κ 2B ≤ κ 2A , imply bj − gij [z](s, t, x) ≤ κ 2A for s ∈ (ξ, ζ]. Let us now define β : Rn → Rn by β(x) = (x1, . . . , xj−1, bj , xj+1, . . . , xn) and notice that the condition 4 of Assumption H [ρ] may be applied to give ρij(s, β(gi[z](s, t, x)), V (z; s, gi[z](s, t, x))) < −κ, s ∈ (ξ, ζ]. Then, for s ∈ (ξ, ζ], ρij(Qi[z](s, t, x)) = ρij(s, gi[z](s, t, x), V (z; s, gi[z](s, t, x))) ≤ ≤ ρij(s, β(gi[z](s, t, x)), V (z; s, gi[z](s, t, x)))+ +A ( bj − gij [z](s, t, x) ) ≤ ≤ −κ+A κ 2A = −κ 2 . Note that the last inequality implies ξ = δi[z](t, x), otherwise it would be 0 = ∂tgij [z](ξ, t, x) = = ρij(Qi[z](ξ, t, x)) for some ξ ∈ (δi[z](t, x), ζ). Hence this inequality holds for s ∈ [δi[z](t, x), δi[z̄](t, x)], yielding ISSN 1562-3076. Нелiнiйнi коливання, 2010, т . 13, N◦ 4 564 W. CZERNOUS −κ 2 ( δi[z̄](t, x)− δi[z](t, x) ) ≥ ≥ δi[z̄](t,x)∫ δi[z](t,x) ρij(Qi[z](s, t, x)) ds = = gij [z](δi[z̄](t, x), t, x)− gij [z](δi[z](t, x), t, x) ≥ ≥ gij [z](δi[z̄](t, x), t, x)− gij [z̄](δi[z̄](t, x), t, x) ≥ ≥ −Ā ∣∣∣∣∣ δi[z̄](t,x)∫ t ‖z − z̄‖C(Es) ds ∣∣∣∣∣ ≥ ≥ −Ā t∫ 0 ‖z − z̄‖C(Es) ds. Since this proves (10) for z, z̄ satisfying (14), the argument of convexity of C1,L ∂ [p] and C1,L[d′](Ωc,Rm) completes the proof. Lemma 2.2. Suppose that Assumptions H[ρ], H[V ] are satisfied and let ϕ ∈ C1,L ∂ [p], z ∈ ∈ C1,L ϕ,c [d] be given. Then, for 1 ≤ i ≤ m, δi[z] ∈ C(Ec) ∩ C1[B̃](E(i,∂) c [z],R), where E(i,∂) c [z] = {(t, x) ∈ Ec : δi[z](t, x) > 0}◦ and B̃ = Cκ−1. Proof. Fix z ∈ C1,L ϕ,c [d] and i, 1 ≤ i ≤ m. Once it is done, we may introduce the notation: f = δi[z], U for the set E(i,∂) c [z], and W for the set E(i,0) c [z] = {(t, x) ∈ Ec : δi[z](t, x) = 0} . We first prove that f ∈ C1[B̃](U,R). Let us temporarily fix (t, x) ∈ U and set ξ = f(t, x). Since by the Lemma 2.1, gi[z] is of class C1 in all variables, and by Assumption H[ρ], ∂τgi[z](τ, t, x) 6= 6= 0 at (ξ, t, x), the existence and continuity of the gradient ∂f at the point (t, x) follow from the implicit function theorem applied to ±bj − gij [z](ξ, t, x) = 0, 1 ≤ j ≤ n. By the same token, fixing j, we may calculate the gradient with the help of the formula ∂xk f(t, x) = − ∂xk gij [z](ξ, t, x) ρij(Qi[z](ξ, t, x)) , 0 ≤ k ≤ n, and estimate it by ‖∂f‖C(U) ≤ C κ , independently of i, j. ISSN 1562-3076. Нелiнiйнi коливання, 2010, т . 13, N◦ 4 CLASSICAL SOLUTIONS OF HYPERBOLIC IBVPS WITH STATE DEPENDENT DELAYS 565 Remark that Ec = U ∪W ∪ {c} × (−b, b) ∪ n⋃ k=1 ∆(k), where ∆(k) = {(t, x) ∈ Ec : |xk| = bk}, 1 ≤ k ≤ n. The continuity of f on W is obvious, and on U follows from differentiability. Extending ρ, V and z in a natural way, we could replace Ec with [−ε, c]× [−b, b] in the formulation of (7) and in the consequent results on bicharacteristics — including differentiability of the new function f̃ = δ̃i[z] on the set analogous to E(i,∂) c [z] and containing f̃−1({0}). By the uniqueness of bicharacteristics, f̃ is identical with f on U. Hence, for (t, x) ∈ f̃−1({0}) = U ∩W, the one-sided limit vanishes: lim (t̄,x̄)→(t,x) (t̄,x̄)∈U f(t̄, x̄) = 0. The continuity of f on U ∪W follows now from the fact that f vanishes on the other side, i.e., on W = W . Then, by extending the data in the opposite direction, we get the continuity on U ∪W ∪ {c} × (−b, b). Finally, from the condition 4 of the Assumption H[ρ] follows easily that f satisfies the local Lipschitz condition, with the uniform constant max{1, Cκ−1}, at each point of ∆(k), 1 ≤ k ≤ n. This shows that f ∈ C(Ec) and completes the proof. 3. Functional integral system. Let W stand for L(C(D,Mm×n),M1×n). The expression ∂wGi(t, x, w)δ, for δ ∈ C(D,Mm×n), is to be interpreted in a way analogous to (6); for the sake of simplicity of calculations, we use ‖ ·‖W (rather than ‖ ·‖L(X,R)) for measuring the values of ∂wGi. Assumption H [ρ,G]. The Assumption H[ρ] is fulfilled, G : E ×X → Rm, in the variables (t, x, w), is continuous and, for 1 ≤ i ≤ m, 1) the derivative ∂xG(t, x, w) and the Fréchet derivative ∂wG(t, x, w) exist for (t, x, w) ∈ ∈ E × C1,L(D,Rm), 2) for (t, x, w), (t, x̄, w̄) ∈ E × C1,L(D,Rm), ‖G(t, x, w)‖, ‖∂xG(t, x, w)‖, ‖∂wGi(t, x, w)‖W ≤ A, ‖Gi(t, x, w)−Gi(t̄, x, w)‖ ≤ A|t− t̄|, ‖∂xGi(t, x, w)− ∂xGi(t, x̄, w̄)‖, ‖∂wGi(t, x, w)− ∂wGi(t, x̄, w̄)‖W ≤ A ( ‖x− x̄‖+ ‖w − w̄‖X ) with the same constant A as in the Assumption H[ρ]. Write Si[z](t, x) = ( δi[z](t, x), gi[z](δi[z](t, x), t, x) ). We define the operator F = (F1, . . . , Fm) on C1,L ϕ,c [d] by the formula Fiz(t, x) = ϕi(Si[z](t, x)) + t∫ δi[z](t,x) Gi(Qi[z](s, t, x))ds on Ec, 1 ≤ i ≤ m, (15) Fz ≡ ϕ on E0 ∪ ∂0Ec. ISSN 1562-3076. Нелiнiйнi коливання, 2010, т . 13, N◦ 4 566 W. CZERNOUS Remark 3.1. The right-hand side of (15) is obtained in the following way. We consider each equation of (1) along its bicharacteristic: ∂tzi(τ, gi[z](τ, t, x)) + ∂xzi(τ, gi[z](τ, t, x)) ∗ ρi(τ, gi[z](τ, t, x), V (z; τ, gi[z](τ, t, x))) = = Gi(τ, gi[z](τ, t, x), V (z; τ, gi[z](τ, t, x))) from which, using (7), we get d dτ zi(τ, gi[z](τ, t, x)) = Gi(τ, gi[z](τ, t, x), V (z; τ, gi[z](τ, t, x))). By integrating the latter equation with respect to τ , and adding the initial value, we get the right-hand side of (15). Assumption H[c, d, V ]. The Assumption H[V ] is fulfilled, and the constant c ∈ (0, a] is small enough so to satisfy, together with d and p, d1 ≥ p1C +A+ cCB, (16) d2 ≥ p1(Q+BĈ) + p2(C2 + ÂĈ) +B + cBQ+ C̃ + 2BĈ, (17) with constantsB,C, C̃,Q defined in (11), (12), and with Ĉ = Cmax{1, Cκ−1}, Â = max{1, A}. Write I = {0 ≤ i ≤ n : hi > 0}. The following compatibility condition for the problem (1), (2) will be needed in our considerations. Assumption Hc[G,ϕ]. The equivalence G(t, x, V (z; t, x)) = G(t, x, V (z̄; t, x)) on ∂0E ∩ E holds for any z, z̄ ∈ C1,L ϕ,a [d]. Moreover, there is ψ ∈ C(∂0E,Mm×n) such that, for each k, 1 ≤ k ≤ n, the system of equations ∂tϕi(t, x) + n∑ j=1 ρij(t, x, V (z; t, x))ψij(t, x) = Gi(t, x, V (z; t, x)), 1 ≤ i ≤ m, (18) holds on ∆(k) = {(t, x) ∈ E : |xk| = bk} with ψij ≡ ∂xjϕi on ∆(k) whenever j ∈ I. Additionally, if 0 ∈ I, then on {0} × (−b, b) holds ∂tϕi(t, x) + ∂xϕi(t, x) ∗ ρi(t, x, V (z; t, x)) = Gi(t, x, V (z; t, x)), 1 ≤ i ≤ m. (19) Remark 3.2. Relation (18) may be considered as an assumption on ϕ on ⋃ k∈I ∆(k) and (18) defines the number ∂xjϕi(t, x) at the points where there is not enough space to define the partial derivative. ISSN 1562-3076. Нелiнiйнi коливання, 2010, т . 13, N◦ 4 CLASSICAL SOLUTIONS OF HYPERBOLIC IBVPS WITH STATE DEPENDENT DELAYS 567 Remark 3.3. Let us explain our application of the chain rule to the term ϕi(Si[z](t, x)), made in the next proof. We write E(ij,∂) c [z] = { (t, x) ∈ E(i,∂) c [z] : Si[z](t, x) ∈ (∆(j))◦ } , 1 ≤ j ≤ n. Note that for (t, x) ∈ E (ij,∂) c [z] we shall not use the partial derivative ∂xjϕi in the expansion of the differential d dxk ϕi(Si[z](t, x)) ( k is fixed, 0 ≤ k ≤ n ) . Fortunately, for those (t, x) the differential d dxk gij [z](δi[z](t, x), t, x) = 0, 0 ≤ k ≤ n, and the number ∂xjϕi(Si[z](t, x)) is defined even for j /∈ I (by compatibility condition), thus it is justified to write d dxk ϕi(Si[z](t, x)) = ∂tϕi(Si[z](t, x))∂xk δi[z](t, x)+ + n∑ j=1 ∂xjϕi(Si[z](t, x)) d dxk gij [z](δi[z](t, x), t, x). Lemma 3.1. Suppose that Assumptions H[ρ,G], H[c, d, V ], Hc[G,ϕ] are satisfied. Then the operator F maps C1,L ϕ,c [d] into itself. Proof. Let z ∈ C1,L ϕ,c [d]. Write Φi[z](s, t, x) = ∂xGi(Qi[z](s, t, x)) + ∂wGi(Qi[z](s, t, x)) ∂xV (z; s, gi[z](s, t, x)), where ∂wGi(Qi)∂xV (z; τ, y) is to be interpreted column-wise. Fix (t, x) ∈ Ec. Once it is done, we may introduce the notation gi = gi[z](·, t, x) and δi = δi[z](t, x). From (15) and by the Remark 3.3, for (t, x) ∈ E (i,∂) c [z], ∂Fiz(t, x) = = [ ∂tϕi(δi, gi(δi)) + ∂xϕi(δi, gi(δi)) ∗ ρi(Qi[z](δi, t, x))−Gi(Qi[z](δi, t, x)) ] ∂δi[z](t, x)+ + ∂xϕi(δi, gi(δi)) ∗ ∂gi[z](δi, t, x) + [ Gi(t, x, V (z; t, x)) ∣∣ 0 ] + + t∫ δi[z](t,x) Φi[z](s, t, x) ∗ ∂gi[z](s, t, x) ds, (20) ISSN 1562-3076. Нелiнiйнi коливання, 2010, т . 13, N◦ 4 568 W. CZERNOUS where [ Gi(t, x, V (z; t, x)) ∣∣ 0 ] = ( Gi(t, x, V (z; t, x)), 0, . . . , 0 ) ∈ R1+n. Moreover, on E (i,0) c [z] ∩ E◦c , ∂Fiz(t, x) = ∂xϕi(0, gi(0)) ∗ ∂gi[z](0, t, x) + [ Gi(t, x, V (z; t, x)) ∣∣ 0 ] + + t∫ 0 Φi[z](s, t, x) ∗ ∂gi[z](s, t, x) ds. (21) Due to the compatibility condition, and by the continuity of δi[z], ∂Fiz(t, x) = ∂xϕi(δi, gi(δi)) ∗ ∂gi[z](δi, t, x) + [ Gi(t, x, V (z; t, x)) ∣∣ 0 ] + + t∫ δi[z](t,x) Φi[z](s, t, x) ∗ ∂gi[z](s, t, x) ds, (22) on E◦c . It follows that ‖∂Fz(t, x)‖ ≤ p1C + CBc+ A on E◦c , which, by the Assumption H[c, d, V ], implies ‖∂Fz‖C(E◦ c ) ≤ d1. Furthermore, for 1 ≤ i ≤ m and for (t, x), (t̄, x̄) ∈ E◦c , ‖∂Fiz(t, x)− ∂Fiz(t̄, x̄)‖ ≤ ≤ ∥∥∥∥∂xϕi(Si[z](t, x)) ∗ ∂gi[z](δi[z](t, x), t, x)− ∂xϕi(Si[z](t̄, x̄)) ∗ ∂gi[z](δi[z](t̄, x̄), t̄, x̄) ∥∥∥∥+ + ∣∣∣∣Gi(t, x, V (z; t, x))−Gi(t̄, x̄, V (z; t̄, x̄)) ∣∣∣∣+ + t∫ δi[z](t,x) ∥∥∥∥Φi[z](s, t, x) ∗ ∂gi[z](s, t, x)− Φi[z](s, t̄, x̄) ∗ ∂gi[z](s, t̄, x̄) ∥∥∥∥ds+ + ∣∣∣∣∣ t̄∫ t ∥∥∥∥Φi[z](s, t̄, x̄) ∗ ∂gi[z](s, t̄, x̄) ∥∥∥∥ds ∣∣∣∣∣ + ∣∣∣∣∣ δi[z](t̄,x̄)∫ δi[z](t,x) ∥∥∥∥Φi[z](s, t̄, x̄) ∗ ∂gi[z](s, t̄, x̄) ∥∥∥∥ds ∣∣∣∣∣. Note that the Lemma 2.2 gives |δi[z](t, x)− δi[z](t̄, x̄)| ≤ Cκ−1 max{|t− t̄|, ‖x− x̄‖}. From the above inequalities, Assumption H[ρ,G] and Lemma 2.1 it follows that ‖∂Fiz(t, x)− ∂Fiz(t̄, x̄)‖ ≤ ≤ ( p1(Q+BĈ) + p2(C2 + ÂĈ) +B + cBQ+ C̃ +BĈ ) max{|t− t̄|, ‖x− x̄‖}+BC|t− t̄|, ISSN 1562-3076. Нелiнiйнi коливання, 2010, т . 13, N◦ 4 CLASSICAL SOLUTIONS OF HYPERBOLIC IBVPS WITH STATE DEPENDENT DELAYS 569 for (t, x), (t̄, x̄) ∈ E◦c , which, in view of the second inequality from the Assumption H[c, d, V ], gives |∂Fz|C0,L(E◦ c ) ≤ d2. The fact that Fiz are continuous extensions of ϕi, is a simple consequence of the definiti- on (15); it remains to prove that this extension is of class C1. From (13), (22), and from the compatibility condition (18) we obtain for (t, x) ∈ ∆(k), 1 ≤ k ≤ n, lim (t̄,x̄)→(t,x) (t̄,x̄)∈E◦ c ∂Fiz(t̄, x̄) = ∂xϕi(t, x) ∗ ∂gi[z](t, t, x) + [ Gi(t, x, V (z; t, x)) ∣∣ 0 ] = = ∂xϕi(t, x) ∗ [ − ρi(t, x, V (z; t, x)) ∣∣ I ] + [ Gi(t, x, V (z; t, x)) ∣∣ 0 ] = = ∂ϕi(t, x), 1 ≤ i ≤ m. If 0 ∈ I, then similar arguments, incurring (19), apply to the case (t, x) ∈ {0} × (−b, b). Lemma 3.1 is proved. 4. Existence of solutions. Theorem 4.1. Suppose that ϕ ∈ C1,L ∂ [p], and Assumptions H[ρ,G], H[c, d, V ], Hc[G,ϕ] are satisfied. Then there exists exactly one solution z̄ ∈ C1,L ϕ,c [d] of problem (1), (2). Moreover, there is Λc ∈ R+ such that ‖z̄ − v‖C(Et) ≤ Λc‖ϕ− ψ‖C(E0∪∂0Et), 0 ≤ t ≤ c, (23) for v ∈ C1,L ϕ̄,c [d] being a solution of (1) with the initial boundary condition (2) with ϕ replaced by ψ ∈ C1,L ∂ [p]. Proof. We prove that there exists exactly one z̄ ∈ C1,L ϕ,c [d] satisfying the equation z = F [z]. Lemma 3.1 shows that F : C1,L ϕ,c [d] → C1,L ϕ,c [d]. From the definition (15) of F , from the Lipschitz continuity of ϕi, and from the Lipschitz continuity (see (9), (10)) of gi and δi with respect to z, follows easily the existence of an L∗ > 0 such that ‖Fiz(t, x)− Fiz̃(t, x)‖ ≤ L∗ t∫ 0 ‖z − z̃‖C(Es) ds (24) for z, z̃ ∈ C1,L ϕ,c [d], (t, x) ∈ Ec, 1 ≤ i ≤ m. Let λ > L∗. We define a metric in C1,L ϕ,c [d] by dλ(z, z̃) = sup { ‖(z − z̃)(t, x)‖e−λt : (t, x) ∈ Ec } . We now prove that there exists q ∈ [0, 1) such that dλ(Fz, F z̃) ≤ qdλ(z, z̃). (25) ISSN 1562-3076. Нелiнiйнi коливання, 2010, т . 13, N◦ 4 570 W. CZERNOUS According to (24), ‖Fz(t, x)− F z̃(t, x)‖ ≤ L∗ t∫ 0 ‖z − z̃‖C(Es) ds = L∗ t∫ 0 ‖z − z̃‖C(Es) e −λseλsds ≤ ≤ L∗dλ(z, z̃) t∫ 0 eλsds = L∗ λ dλ(z, z̃)(eλt − 1) ≤ L∗ λ dλ(z, z̃)eλt for (t, x) ∈ Ec. Then ‖Fz(t, x)− F z̃(t, x)‖e−λt ≤ L∗ λ dλ(z, z̃) for all (t, x) ∈ Ec, which gives (25) with q = L∗λ−1. By the Banach fixed point theorem, there exists a unique fixed point of F . Denoting this fixed point by z̄, we have for (t, x) ∈ Ec z̄i(t, x) = ϕi(δi[z̄](t, x), gi[z̄](δi[z̄](t, x), t, x))+ + t∫ δi[z̄](t,x) Gi(s, gi[z̄](s, t, x), V (z̄; s, gi[z̄](s, t, x)))ds, 1 ≤ i ≤ m. Now put ζ = δi[z̄](t, x). For a given x ∈ [−b, b], let us denote y = gi[z̄](ζ, t, x). It follows from Lemma 2.1 that gi[z̄](s, t, x) = gi[z̄](s, ζ, y) for s, t ∈ [ζ, c] and x = gi[z̄](t, ζ, y). Then we get z̄i(t, gi[z̄](t, ζ, y)) = ϕi(ζ, y) + t∫ ζ Gi(s, gi[z̄](s, ζ, y), V (z̄; s, gi[z̄](s, ζ, y)))ds, 1 ≤ i ≤ m. (26) Relations y = gi[z̄](ζ, t, x) and x = gi[z̄](t, ζ, y) are equivalent for x, y ∈ [−b, b]. By differenti- ating (26) with respect to t and putting again x = gi[z̄](t, ζ, y) we conclude that z̄ satisfies (1). Since z̄ satisfies initial boundary condition (2), it is a solution of our problem. We now prove the relation (23). The function v satisfies the integral functional system z(t, x) = Fz(t, x) and initial boundary condition (2) with ψ instead of ϕ. It follows easily that there is Λ ∈ R+ such that the integral inequality ‖z̄ − v‖C(Et) ≤ ‖ϕ− ψ‖C(E0∪∂0Et) + Λ t∫ 0 ‖z̄ − v‖C(Es) ds, 0 ≤ t ≤ c, is satisfied. Using the Gronwall inequality, we obtain (23) with Λc = exp(Λc). Theorem 4.1 is proved. ISSN 1562-3076. Нелiнiйнi коливання, 2010, т . 13, N◦ 4 CLASSICAL SOLUTIONS OF HYPERBOLIC IBVPS WITH STATE DEPENDENT DELAYS 571 Remark 4.1. Inequalities (16), (17), given in the Assumption H[c, d, V ], have the following impact on the conditions on the operator V . We indicate, how to solve those inequalities. Put, for example, d1 = A + 2(1 + A)(1 + p1); the condition 1 of Assumption H[V ] produces then a corresponding constant d̄1 ≥ 0. Having performed easy calculations, one can see that condition c ≤ A−1(1 + d̄1)−1 log 2, on c, assures the fulfilment of (16). After the construction of d̄1, an example of a suitable value of d2, in terms of d̄1 and of given constants, may be found using (17) (we shall assume that cd̄2 is appropriately bounded). Since at this stage d1 and d2 are fixed, the condition 2 of Assumption H[V ] gives d̄2. This leads to one more constraint on c, of which we assume the stronger one. The above explained dependence of choice of d2 on d̄1 shows that the condition 2 of the considered Assumption does not suffice for solvability of inequalities from Assumption H [c, d, V ], but that the condition 1 has to be added. 5. Systems with state dependent delays. Suppose that z : Ω → R and (t, x) ∈ E are fixed. We define the function z(t,x) : D → R as follows: z(t,x)(τ, ξ) = z(t+ τ, x+ ξ), (τ, ξ) ∈ D. The function z(t,x) is the restriction of z to the set [t− h0, t]× [x− h, x+ h] and this restriction is shifted to the set D. For z : Ω → Rm, z = (z1, . . . , zm), write z(t,x) = ((z1)(t,x), . . . , (zm)(t,x)). Let ψij : E × C1,L(D,Rm) → R, 1 ≤ i ≤ m, 0 ≤ j ≤ n, be given. Consider the function( (z1)ψ1(t,x,w), . . . , (zm)ψm(t,x,w) ) ∈ X, where ψi = (ψi0, . . . , ψin), 1 ≤ i ≤ m, and z : Ω → Rm. We write it zψ(t,x,w) for brevity. We show that the operator V , defined by V (z; t, x) = zψ(t,x,z(t,x)) (27) satisfies Assumption H[V ], provided that certain regularity conditions on ψ are met. Assumption H [ψ]. Deviating function ψ : E × X → Mm×(n+1) is continuous and, for 1 ≤ i ≤ m, 1) the relations ψi(t, x, w) ∈ Et hold on E ×X , 2) derivatives: ∂ψi and the Fréchet derivative ∂wψi exist on E × C1,L(D,Rm), 3) there is a non-negative constantA1 independent of i and such that, for (t, x, w), (t, x̄, w̄) ∈ ∈ E × C1,L(D,Rm), ‖∂ψi(t, x, w)‖, ‖∂wψi(t, x, w)‖L(Y,M(n+1)×(n+1)) ≤ A1 and ‖∂ψi(t, x, w)− ∂ψi(t, x̄, w̄)‖, ‖∂wψi(t, x, w)− ∂wψi(t, x̄, w̄)‖L(Y,M(n+1)×(n+1)) are bounded from above by A1 ( ‖x− x̄‖+ ‖w − w̄‖X ) . ISSN 1562-3076. Нелiнiйнi коливання, 2010, т . 13, N◦ 4 572 W. CZERNOUS In view of the above Assumption, differentiation of (27) gives ∂Vi(z; t, x) ≡ (∂zi)ψi(t,x,z(t,x)) ∗ [ ∂ψi(t, x, z(t,x)) + ∂wψi(t, x, z(t,x))(∂z)(t,x) ] on D, and, consequently, for z ∈ C1,L ϕ,c [d] and (t, x), (t, x̄) ∈ E, ‖∂Vi(z; t, x)‖C(D,M1×(n+1)) ≤ d1A1(1+ +d1) and ‖∂Vi(z; t, x)− ∂Vi(z; t, x̄)‖C(D,M1×(n+1)) ≤ A1[d1d2 + (1 + d1)2(d1 + d2A1)]‖x− x̄‖. Taking maximum (w.r.t. i) on the left-hand sides of these estimates, we obtain the conditions 1, 2 of Assumption H[V ] with d̄1 = d1A1(1 + d1) and d̄2 = A1[d1d2 + (1 + d1)2(d1 + d2A1)]. Fulfilment of the condition 3 of that Assumption follows from the estimates ‖Vi(z; t, x)− Vi(z̄; t, x)‖C(D) ≤ ‖(zi)ψi(t,x,z(t,x)) − (zi)ψi(t,x,z̄(t,x))‖C(D)+ + ‖(zi − z̄i)ψi(t,x,z̄(t,x))‖C(D) ≤ ≤ d1A1‖z − z̄‖C(Et) + ‖zi − z̄i‖C(Et) ≤ ≤ (d1A1 + 1)‖z − z̄‖C(Et) , 1 ≤ i ≤ m. Thus we have proved the following theorem. Theorem 5.1. Suppose thatϕ ∈ C1,L ∂ [p] and AssumptionsH[ρ,G], H[ψ] are satisfied. Further- more, assume that the inequalities (16), (17) hold, as well as the compatibility conditions (18), (19). Then there exists exactly one solution z̄ ∈ C1,L ϕ,c [d] of the system ∂tzi(t, x) + n∑ j=1 ρij(t, x, zψ(t,x,z(t,x)))∂xjzi(t, x) = Gi(t, x, zψ(t,x,z(t,x))), 1 ≤ i ≤ m, (28) augmented with the generalized Cauchy condition (2). Moreover, there is Λc ∈ R+ such that the Lipschitz condition (23), with respect to data, holds for ψ ∈ C1,L ∂ [p] and for v ∈ C1,L ϕ̄,c [d] being a solution of (28) with the initial boundary condition z ≡ ψ on E0 ∪ ∂0Ec. Assumption H [ρ̄, Ḡ]. Functions ρ̄ : E × Rm → Mm×n, Ḡ : E × Rm → Rm, in variables (t, x, y), are continuous, uniformly bounded, and 1) Ḡ is Lipschitz continuous in t, 2) the derivatives ∂xρ̄, ∂yρ̄, ∂xḠ, ∂yḠ exist on E × Rm, are continuous in t, and uniformly bounded, 3) these derivatives are Lipschitz continuous in x and y. Example 5.1. Suppose that Assumption H[ρ̄, Ḡ] is satisfied and set ρ(t, x, w) = ρ̄ (t, x, w(0, 0)) , G(t, x, w) = Ḡ (t, x, w(0, 0)) . Then the Assumption H[ρ,G] is fulfilled and the system (28) takes the form ∂tzi(t, x) + n∑ j=1 ρ̄ij ( t, x, z(ψ(t, x, z(t,x))) ) ∂xjzi(t, x) = Ḡi ( t, x, z(ψ(t, x, z(t,x))) ) , 1 ≤ i ≤ m, ISSN 1562-3076. Нелiнiйнi коливання, 2010, т . 13, N◦ 4 CLASSICAL SOLUTIONS OF HYPERBOLIC IBVPS WITH STATE DEPENDENT DELAYS 573 that is, it becomes a system of equations with deviating argument, where the deviation is state dependent. Example 5.2. Suppose that Assumption H[ρ̄, Ḡ] is satisfied and set ρ(t, x, w) = ρ̄ t, x,∫ D w(τ, ξ) dτ dξ  , G(t, x, w) = Ḡ t, x,∫ D w(τ, ξ) dτ dξ  . Then the Assumption H[ρ,G] is fulfilled and the system (28) takes the form ∂tzi(t, x) + n∑ j=1 ρ̄ij t, x,∫ D zψ(t,x,z(t,x))(τ, ξ) dτ dξ  ∂xjzi(t, x) = = Ḡi t, x,∫ D zψ(t,x,z(t,x))(τ, ξ) dτ dξ  , 1 ≤ i ≤ m, that is, it becomes a system of integro-differential equations, where the domain of integration is state dependent. 1. Szarski J. Generalized Cauchy problem for differential-functional equations with first order partial derivati- ves // Bull. Acad. pol. sci. Sér. sci. math., astron. et phys. — 1976. — 24, № 8. — P. 575 – 580. 2. Szarski J. Cauchy problem for an infinite system of differential-functional equations with first order partial derivatives // Comment. math. Spec. Issue. — 1978. — 1. — P. 293 – 300. 3. Brandi R., Ceppitelli R. Existence, uniqueness and continuous dependence for a hereditary nonlinear functi- onal partial differential equation of the first order // Ann. pol. math. — 1986. — 47, № 2. — P. 121 – 136. 4. Kamont Z. On the local Cauchy problem for Hamilton – Jacobi equations with a functional dependence // Rocky Mountain J. Math. — 2000. — 30, № 2. — P. 587 – 608. 5. Jaruszewska-Walczak D. Existence of solutions of first order partial differential-functional equations // Boll. Unione mat. ital. B. — 1990. — 4, № 1. — P. 57 – 82. 6. Kamont Z. Hyperbolic functional differential inequalities and applications // Math. and its Appl. — Dordrecht: Kluwer Acad. Publ., 1999. — 486. 7. Hale J. K., Verduyn L., Sjoerd M. Introduction to functional-differential equations // Appl. Math. Sci. — New York: Springer, 1993. — 99. 8. Kolmanovskii V., Myshkis A. Introduction to the theory and applications of functional-differential equations // Math. and its Appl. — Dordrecht: Kluwer Acad. Publ., 1999. — 463. 9. Lakshmikantham V., Leela S. Differential and integral inequalities: theory and applications // Math. Sci. and Eng. — New York; London: Acad. Press, 1969. — 55. 10. Gołaszewska A., Turo J. Carathédory solutions to quasi-linear hyperbolic systems of partial differential equations with state dependent delays // Funct. Different. Equat. — 2007. — 14, № 2-4. — P. 257 – 278. 11. Kamont Z. First order partial functional differential equations with state dependent delays // Nonlinear Stud. — 2005. — 12, № 2. — P. 135 – 157. 12. Kamont Z., Turo J. Carathédory solutions to hyperbolic functional differential systems with state dependent delays // Rocky Mountain J. Math. — 2005. — 35, № 6. — P. 1935 – 1952. 13. Cooke K. L. Functional differential systems: some models and perturbation problems // Int. Symp. Different. Equat. and Dynam. Systems / Eds J. Hale, J. La Salle. — New York: Acad. Press, 1967. Received 30.04.09, after revision — 24.06.09 ISSN 1562-3076. Нелiнiйнi коливання, 2010, т . 13, N◦ 4