Оптимальний метод скінченних елементів для областей складної форми (задача Діріхлє для рівняння з еліптичним диференціальним оператором 2-го порядку)

Описано пiдхiд до розв’язання граничної задачi для елiптичного диференцiального рiвняння оптимальним методом скiнченних елементiв (ОМСЕ), в якому базиснi функцiї не задаються наперед, а знаходяться як сталi в методi Рiтца з умови мiнiмiзацiї вiдповiдного функцiонала....

Full description

Saved in:
Bibliographic Details
Date:1999
Main Authors: Литвин, О.М., Носов, К.В., Трофименко, О.П.
Format: Article
Language:Ukrainian
Published: Інститут математики НАН України 1999
Series:Нелінійні коливання
Online Access:http://dspace.nbuv.gov.ua/handle/123456789/175535
Tags: Add Tag
No Tags, Be the first to tag this record!
Journal Title:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Cite this:Оптимальний метод скінченних елементів для областей складної форми (задача Діріхлє для рівняння з еліптичним диференціальним оператором 2-го порядку) / О.М. Литвин, К.В. Носов, О.П. Трофименко // Нелінійні коливання. — 1999. — Т. 2, № 2. — С. 217-224. — Бібліогр.: 9 назв. — укр.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Description
Summary:Описано пiдхiд до розв’язання граничної задачi для елiптичного диференцiального рiвняння оптимальним методом скiнченних елементiв (ОМСЕ), в якому базиснi функцiї не задаються наперед, а знаходяться як сталi в методi Рiтца з умови мiнiмiзацiї вiдповiдного функцiонала.