Global robust exponential stability for Hopfield neural networks with non-Lipschitz activation functions

This paper is concerned with the problem of the global robust exponential stability for Hopfield neural networks with norm-bounded parameter uncertainties and inverse Holder neuron activation functions. By ¨ applying Brouwer degree properties and some analysis techniques, the existence and uniquenes...

Full description

Saved in:
Bibliographic Details
Date:2012
Main Authors: Hongtao Yu, Huaiqin Wu
Format: Article
Language:English
Published: Інститут математики НАН України 2012
Series:Нелінійні коливання
Online Access:http://dspace.nbuv.gov.ua/handle/123456789/175586
Tags: Add Tag
No Tags, Be the first to tag this record!
Journal Title:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Cite this:Global robust exponential stability for Hopfield neural networks with non-Lipschitz activation functions / Hongtao Yu, Huaiqin Wu // Нелінійні коливання. — 2012. — Т. 15, № 1. — С. 127-138. — Бібліогр.: 26 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Description
Summary:This paper is concerned with the problem of the global robust exponential stability for Hopfield neural networks with norm-bounded parameter uncertainties and inverse Holder neuron activation functions. By ¨ applying Brouwer degree properties and some analysis techniques, the existence and uniqueness of the equilibrium point are investigated. Based on the Lyapunov stability theory, a global robust exponential stability criterion is derived in terms of linear matrix inequality (LMI). Two numerical examples are provided to demonstrate the effectiveness and validity of the proposed robust stability results.