Плотность множества неразрешимых задач Коши во множестве всех задач Коши в случае бесконечномерного банахова пространства
Доведено таку теорему. Нехай E i f : R × E → E — вiдповiдно довiльнi нескiнченновимiрний банахiв простiр i неперервне вiдображення. Для довiльних точки (t0, z0) ∈ R × E i числа ε > 0 знайдеться таке неперервне вiдображення g : R × E → E, що sup ||f(t, x) − g(t, x)|| ≤ ε i задача Кошi z`(t) =...
Gespeichert in:
Datum: | 2002 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | Russian |
Veröffentlicht: |
Інститут математики НАН України
2002
|
Schriftenreihe: | Нелінійні коливання |
Online Zugang: | http://dspace.nbuv.gov.ua/handle/123456789/175831 |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Zitieren: | Плотность множества неразрешимых задач Коши во множестве всех задач Коши в случае бесконечномерного банахова пространства / В.Е. Слюсарчук // Нелінійні коливання. — 2002. — Т. 5, № 1. — С. 86-89. — Бібліогр.: 1 назв. — рос. |