Influence of different nanoparticles embedded in crystalline carbon monoxide matrix on heat transfer in the nanocomposite

The preliminary results of investigations of heat transfer in nanocomposites consisting of nanoparticles randomly distributed in solid carbon monoxide matrix are presented. In the experiment the thermal conductivity coefficient dependence on temperature for CO crystal with silica and palladium nanop...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2019
Автори: Nikonkov, R.V., Stachowiak, P., Jeżowski, A.
Формат: Стаття
Мова:English
Опубліковано: Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна НАН України 2019
Назва видання:Физика низких температур
Теми:
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/175947
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Influence of different nanoparticles embedded in crystalline carbon monoxide matrix on heat transfer in the nanocomposite / R.V. Nikonkov, P. Stachowiak, A. Jeżowski // Физика низких температур. — 2019. — Т. 45, № 3. — С. 289-293. — Бібліогр.: 14 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-175947
record_format dspace
spelling irk-123456789-1759472021-02-04T01:26:36Z Influence of different nanoparticles embedded in crystalline carbon monoxide matrix on heat transfer in the nanocomposite Nikonkov, R.V. Stachowiak, P. Jeżowski, A. Спеціальний випуск. “Proceedings of 12th International Conference on Cryocrystals and Quantum Crystals (CC-2018)” (Wrocław, Poland, August 26–31, 2018) The preliminary results of investigations of heat transfer in nanocomposites consisting of nanoparticles randomly distributed in solid carbon monoxide matrix are presented. In the experiment the thermal conductivity coefficient dependence on temperature for CO crystal with silica and palladium nanoparticles of different size embedded in the crystal structure was determined over the temperature range 2.2–35 K by steady-state heat flow method. The results of the measurements were analyzed within the frame of relaxation time approximation. The analysis shows that lowering of the thermal conductivity of the nanocomposites relative to pure carbon monoxide crystal observed for both types of the investigated nanoparticles, palladium and silica, is caused mostly by scattering of phonons by boundaries of the nanoparticles. Additionally, the presence of the nanoinclusions promotes higher density of dislocations and influences the matrix lattice dynamics. Наведено попередні результати досліджень теплопереносу в нанокомпозитах, які містять наночастинки, що випадково розподілені у твердій матриці монооксиду вуглецю. Методом стаціонарного теплового потоку в температурному інтервалі 2,2–35 К визначено експериментальні залежності коефіцієнта теплопровідності від температури для кристалевого СО, що містить наночастинки оксиду кремнію та паладію різних розмірів. Результати вимірювань проаналізовано в рамках апроксимації часу релаксації. Аналіз показує, що зниження теплопровідності нанокомпозитів щодо чистого кристала монооксиду вуглецю, яке спостерігається для досліджених наночастинок паладію та оксиду кремнію, обумовлено головним чином розсіюванням фононів на границях наночастинок. Крім того, наявність нановключень сприяє більш високій щільності дислокацій і впливає на динаміку гратки матриці. Приведены предварительные результаты исследований теплопереноса в нанокомпозитах, содержащих наночастицы, случайным образом распределенные в твердой матрице монооксида углерода. Методом стационарного теплового потока в температурном интервале 2,2–35 К определены экспериментальные зависимости коэффициента теплопроводности от температуры для кристаллического СО, содержащего внедренные наночастицы оксида кремния и палладия различных размеров. Результаты измерений проанализированы в рамках аппроксимации времени релаксации. Анализ показывает, что понижение теплопроводности нанокомпозитов относительно чистого кристалла монооксида углерода, наблюдаемое для исследуемых наночастиц палладия и оксида кремния, обусловлено главным образом рассеянием фононов на границах наночастиц. Кроме того, наличие нановключений способствует более высокой плотности дислокаций и влияет на динамику решетки матрицы. 2019 Article Influence of different nanoparticles embedded in crystalline carbon monoxide matrix on heat transfer in the nanocomposite / R.V. Nikonkov, P. Stachowiak, A. Jeżowski // Физика низких температур. — 2019. — Т. 45, № 3. — С. 289-293. — Бібліогр.: 14 назв. — англ. 0132-6414 http://dspace.nbuv.gov.ua/handle/123456789/175947 en Физика низких температур Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
topic Спеціальний випуск. “Proceedings of 12th International Conference on Cryocrystals and Quantum Crystals (CC-2018)” (Wrocław, Poland, August 26–31, 2018)
Спеціальний випуск. “Proceedings of 12th International Conference on Cryocrystals and Quantum Crystals (CC-2018)” (Wrocław, Poland, August 26–31, 2018)
spellingShingle Спеціальний випуск. “Proceedings of 12th International Conference on Cryocrystals and Quantum Crystals (CC-2018)” (Wrocław, Poland, August 26–31, 2018)
Спеціальний випуск. “Proceedings of 12th International Conference on Cryocrystals and Quantum Crystals (CC-2018)” (Wrocław, Poland, August 26–31, 2018)
Nikonkov, R.V.
Stachowiak, P.
Jeżowski, A.
Influence of different nanoparticles embedded in crystalline carbon monoxide matrix on heat transfer in the nanocomposite
Физика низких температур
description The preliminary results of investigations of heat transfer in nanocomposites consisting of nanoparticles randomly distributed in solid carbon monoxide matrix are presented. In the experiment the thermal conductivity coefficient dependence on temperature for CO crystal with silica and palladium nanoparticles of different size embedded in the crystal structure was determined over the temperature range 2.2–35 K by steady-state heat flow method. The results of the measurements were analyzed within the frame of relaxation time approximation. The analysis shows that lowering of the thermal conductivity of the nanocomposites relative to pure carbon monoxide crystal observed for both types of the investigated nanoparticles, palladium and silica, is caused mostly by scattering of phonons by boundaries of the nanoparticles. Additionally, the presence of the nanoinclusions promotes higher density of dislocations and influences the matrix lattice dynamics.
format Article
author Nikonkov, R.V.
Stachowiak, P.
Jeżowski, A.
author_facet Nikonkov, R.V.
Stachowiak, P.
Jeżowski, A.
author_sort Nikonkov, R.V.
title Influence of different nanoparticles embedded in crystalline carbon monoxide matrix on heat transfer in the nanocomposite
title_short Influence of different nanoparticles embedded in crystalline carbon monoxide matrix on heat transfer in the nanocomposite
title_full Influence of different nanoparticles embedded in crystalline carbon monoxide matrix on heat transfer in the nanocomposite
title_fullStr Influence of different nanoparticles embedded in crystalline carbon monoxide matrix on heat transfer in the nanocomposite
title_full_unstemmed Influence of different nanoparticles embedded in crystalline carbon monoxide matrix on heat transfer in the nanocomposite
title_sort influence of different nanoparticles embedded in crystalline carbon monoxide matrix on heat transfer in the nanocomposite
publisher Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна НАН України
publishDate 2019
topic_facet Спеціальний випуск. “Proceedings of 12th International Conference on Cryocrystals and Quantum Crystals (CC-2018)” (Wrocław, Poland, August 26–31, 2018)
url http://dspace.nbuv.gov.ua/handle/123456789/175947
citation_txt Influence of different nanoparticles embedded in crystalline carbon monoxide matrix on heat transfer in the nanocomposite / R.V. Nikonkov, P. Stachowiak, A. Jeżowski // Физика низких температур. — 2019. — Т. 45, № 3. — С. 289-293. — Бібліогр.: 14 назв. — англ.
series Физика низких температур
work_keys_str_mv AT nikonkovrv influenceofdifferentnanoparticlesembeddedincrystallinecarbonmonoxidematrixonheattransferinthenanocomposite
AT stachowiakp influenceofdifferentnanoparticlesembeddedincrystallinecarbonmonoxidematrixonheattransferinthenanocomposite
AT jezowskia influenceofdifferentnanoparticlesembeddedincrystallinecarbonmonoxidematrixonheattransferinthenanocomposite
first_indexed 2025-07-15T13:33:25Z
last_indexed 2025-07-15T13:33:25Z
_version_ 1837720043294556160
fulltext Low Temperature Physics/Fizika Nizkikh Temperatur, 2019, v. 45, No. 3, pp. 289–293 Influence of different nanoparticles embedded in crystalline carbon monoxide matrix on heat transfer in the nanocomposite R.V. Nikonkov, P. Stachowiak, and A. Jeżowski Institute for Low Temperature and Structure Research, Polish Academy of Sciences, PN 1410, 50-950 Wroclaw, Poland E-mail: r.nikonkov@intibs.pl Received October 24, 2018 The preliminary results of investigations of heat transfer in nanocomposites consisting of nanoparticles ran- domly distributed in solid carbon monoxide matrix are presented. In the experiment the thermal conductivity co- efficient dependence on temperature for CO crystal with silica and palladium nanoparticles of different size em- bedded in the crystal structure was determined over the temperature range 2.2–35 K by steady-state heat flow method. The results of the measurements were analyzed within the frame of relaxation time approximation. The analysis shows that lowering of the thermal conductivity of the nanocomposites relative to pure carbon monox- ide crystal observed for both types of the investigated nanoparticles, palladium and silica, is caused mostly by scattering of phonons by boundaries of the nanoparticles. Additionally, the presence of the nanoinclusions pro- motes higher density of dislocations and influences the matrix lattice dynamics. Keywords: nanocomposite, thermal conductivity, phonon relaxation. Introduction For the recent two decades nanosize and nanostructured objects are focus of tremendous scientific interest. The rea- son for the interest is twofold: application motivated and purely cognitive. The nanoobjects usually show very differ- ent physical properties from those observed for their macro- scopic counterparts. Some of the new properties make them successfully utilizable in designing new devices or enhanc- ing parameters of already produced ones. Since prevailing majority of the devices work at ambient or higher tempera- tures, the application motivated investigations of the proper- ties of the nanostructures are mostly carried out in this tem- perature region, see, e.g., [1–3]. The interest towards the nanosize and nanostructured objects motivated by scientific curiosity is directly related to their exceptional physical properties and the investigations are carried out in wider temperature range. On the wave of the nano-boom a lot of theoretical works which try to describe and explain physical phenomena in the nano-world have been done. Some of them are devoted to analysis of vibrations of a crystalline lattice in which nanosize particles were embedded. It turned out, for example, that the effect of interaction of the lattice vibrations with an individual nanoparticle strongly depends on the shape of the nanoparticle, its material and the ratio of the linear dimensions to the wave length [4–6]. Also the presence of numerous nanoparticles in a crystal- line medium and hence effects of multiple or dependent (correlated) elastic scattering of phonons by the nanoparti- cles may affect the velocity and density of state of phonons as well as influences the mean free path of phonons in not a trivial way [7]. Additionally, the effects of both multiple and dependent scattering increase with increasing volume fraction of nanoparticles [7]. The mentioned above as well as possibly other effects should influence, among other physical properties, the heat transfer in a crystal with na- noparticles embedded in its structure. In spite of numerous investigations of nanoscale transport related problems, see, e.g., [8] and references therein, the problem of interaction of crystalline matrix phonons with foreign inclusions fea- turing linear parameters comparable to the phonon wave length, remains far from being understood. In the current paper we present our preliminary results of experimental investigations of the thermal conductivity of model nanocomposites obtained from nanoparticles of silica and palladium embedded in the crystalline matrix of carbon monoxide. In our experiment the nanoparticles em- bedded in the matrix made up relatively high fraction of © R.V. Nikonkov, P. Stachowiak, and A. Jeżowski, 2019 R.V. Nikonkov, P. Stachowiak, and A. Jeżowski the volume of the sample. The experiment was carried out on a number of samples containing nanoparticles of different mean linear dimensions. The choice of the nanocomposite constituents was dictated by relative simplicity both of the carbon monoxide matrix and the SiO2 and Pd nanopowders. Here, it also should be emphasized that solid CO, belonging to the so-called N2 type solids, is very well-known dielectric crystal. At equilibrium vapor pressure solid CO appears, de- pending on the temperature, in one of two structural phas- es. In the temperature range 61.57–68.09 K the CO crystal shows a structure in which the linear molecules precess over their mass centers located in an hcp lattice nodes. This is the so-called β-phase of the crystal. At 61.57 K the crys- tal undergoes a structural phase transition: below this tem- perature it exists in orientationally-ordered fcc structure, known as the α-phase. The axes of the molecules are ori- ented along space diagonals of the elementary cubic cell. Due to the asymmetry of CO molecule, the molecules are displaced a little from the regular lattice positions. This structure belongs to the space group P213 [9]. Despite nu- merous theoretical propositions [9], an existence of a low- temperature phase of long-range ordering of carbon mon- oxide dipoles in the α-phase was not confirmed. To the contrary, almost all experiments carried out so far have indicated disordering of the molecules down to tempera- tures below 1 K. Such a glassy state in the dipole subsys- tem of orientationally ordered phase of the CO crystal is also seen in the thermal conductivity of the crystal [10]. Experiment In our experiment the thermal conductivity of cryocrystal nanocomposites was determined by steady-state heat flow method in the temperature range from 2.2 to 35 K. The methodology of the measurement and its technical aspect have been described in details in our previous paper [11]. The central part of the experimental setup was an am- poule made from glass tube of an inner diameter of 6 mm, a wall thickness of 1 mm and a length of 50 mm. To the ends of the tube two caps made of copper were fixed with epoxy and two germanium resistance thermometers spaced 10 mm from each other were glued to the cell cylindrical wall. The lower one was mounted 10 mm above the bottom of the ampoule. To the top cap an electric gradient heater was at- tached. Through the cap a thin-wall stainless steel capillary ran. The capillary allowed to pump out the cell or fill it with carbon monoxide gas and thermal exchange gaseous helium. During the experiment the bottom cap rested in a copper base of controlled temperature. For obtaining the nanocomposite samples, gaseous car- bon monoxide of 99.999% purity and amorphous silica ox- ide as well as amorphous palladium nanoparticles of differ- ent size were used. The SiO2 nanopowders featured nanoparticles of linear dimension of about 5, 18, 42, 162 nm while the Pd nanoparticles — 6, 8, 10, 12, 18 and 24 nm. The nanoparticle volume fraction in the investigated samples (the ratio of the volume taken by the nanoparticle to the vol- ume of the sample) was approximately 7% for CO–SiO2 and 14% for CO–Pd nanocomposites, regardless of the linear dimension of the nanoparticles. The volume fraction was determined by precise weighting of the nanopowder filling the volume of the ampoule. For each sample the powder was placed inside the cell to fully fill the tube after the bottom cap was fixed to the ampoule. Then the upper cap was also glued and the as- sembled cell was installed in the measuring chamber of the cryostat. At the beginning of the experiment the tempera- ture of the cell was lowered to a little bit above the triple point temperature of carbon monoxide and the gas was let to the cell, whereupon the condensation to its liquid phase began. During the condensation the temperature of the up- per part of the cell was maintained a few Kelvins higher than the temperature of the bottom so that the liquid gradu- ally filled the cell from its bottom to the top. Finally, the temperature of the bottom of the ampoule was slowly low- ered — the liquid solidified forming carbon monoxide SiO2 or carbon monoxide Pd cryocrystal nanocomposite. Cooling rate during the crystal growth was 3 K/h. After crystalliza- tion the nanocomposite was cooled down to the tempera- ture of the thermal conductivity measurement at the cool- ing rate of 6 K/h. In the process of determination of the thermal conduc- tivity two distorting factors were taken into account: (i) the parasitic temperature gradient being a result of the heat radiation due to the temperature mismatch of the LHe thermal shield of the measuring cell and the sample and (ii) the heat transported by the cell glass wall. To determine the first one, the measurements of the parasitic temperature gradient was carried out at various temperatures for each of the samples. As for the second one, the measurement of the dependence of the thermal conductivity coefficient of empty cell was performed in a separate experiment. The random error of the thermal conductivity measure- ment at low temperatures did not exceed 1.5%, whereas above 20 K it increased to 3%, mostly due to effects con- nected with spurious heat leaks. The systematic error did not exceed 3%. Results Figures 1 and 3 show our measurement results of the dependences of the thermal conductivity coefficient k for carbon monoxide based nanocomposites with palladium spherical nano-admixtures and with silica nanoparticles of different size on temperature. Both of the obtained families of the temperature dependences of k dispaly the shape typical for a dielectric crystal. Generally, impurities cause a decreasing of total thermal conductivity of the investi- gated nanocomposites when compared to pure crystal of carbon monoxid [10]. 290 Low Temperature Physics/Fizika Nizkikh Temperatur, 2019, v. 45, No. 3 Influence of different nanoparticles embedded in crystalline carbon monoxide matrix on heat transfer in the nanocomposite The thermal conductivity of the nanocomposites depends on the nanoparticles size and the dependence is not mono- tonic. Initially the thermal conductivity decreases with in- creasing nano-spheres diameter and after achieving certain “critical” particles size, for which the phonon scattering reaches its maximum (and the thermal conductivity reaches its minimum), further increasing of particles size causes an increase of samples thermal conductivity, see Figs. 2 and 4. Here it should be noticed that for the samples with SiO2 nanoparticles the size-effect is clear however not as promi- nent as for the CO–Pd nanostructure. In all cases the thermal conductivity at higher tempera- tures (T > 20 K) aspire to the same value, the value of the thermal conductivity of pure CO crystal. Taking into account that the characteristics of the used nanoadmixtures (the type of the material, the linear dimen- sions and the volume fraction) are strongly different from each other and that their effect on the total thermal conduc- tivity of the samples is similar (compare Figs. 2 and 4), one can assume, that the material of the sample matrix gives the decisive contribution to the thermal conductivity. The impurities cause only some extra effects in the matrix. Therefore, the results of the measurements were ana- lyzed using the Callaway method [12]. In this approach each mechanism of elastic scattering of phonons is repre- sented by its characteristic relaxation time. The thermal conductivity of a dielectric crystal can be written as a sum 1 2k k k= + , (1) where ( ) /3 4 3 1 2 2 0 e , 2 e 1 T x CB B x xk kk T dx v θ τ =    π − ∫  (2) Fig. 1. (Color online) Temperature dependences of thermal con- ductivity of carbon monoxide nanocomposite with palladium nanoparticles of different linear dimensions: 6 nm (), 8 nm (), 10 nm (), 12 nm () and 18 nm (). For the comparison purpose the data for pure CO were also shown () [10]. Solid lines are ap- proximations of the experimental data with the expression (10). Fig. 2. The thermal conductivity (at the maximum of the thermal conductivity curve) of carbon monoxide based nanocomposite as a function of palladium nanoparticle size. Fig. 3. (Color online) Thermal conductivity of carbon monoxide nanocomposite with SiO2 nanoparticles of different linear dimen- sions: 5 nm (), 18 nm (), 42 nm (), 162 nm (). Fig. 4. The thermal conductivity (at the maximum of the thermal conductivity curve) of CO-based nanocomposite as a function of silica nano-inclusions size. Low Temperature Physics/Fizika Nizkikh Temperatur, 2019, v. 45, No. 3 291 R.V. Nikonkov, P. Stachowiak, and A. Jeżowski and ( ) ( ) 2 / 4 2 3 0 3 2 2 / 4 2 0 e e 1 2 e e 1 T x C xn B B T x C xn r x dx k kk T v x dx θ θ           τ τ − =    π τ τ τ − ∫ ∫  , (3) where 4 2 3/ 2BG k v= π  , / Bx k T= ω ; 103.3θ = K is Debye temperature of carbon monoxide crystal, iτ is relaxation time of phonon scattering, ( )( ) 1/33 32 / 3 1225.5l tv v v −− − == + ms–1 is phonon propagation velocity averaged over longitudinal lv and transversal tv polarizations [9], and ω is phonon frequency. Assuming additivity of the effects of scattering, the to- tal relaxation rate 1 C −τ may be written down as a sum of the relaxation rates of the resistive 1 r −τ and normal 1 n −τ proc- esses: 1 1 1 C r n − − −τ = τ + τ , (4) where 1 1 1 1 1 r b p d U − − − − −τ = τ + τ + τ + τ (5) and the quantities 1 b ba−τ = , (6) 1 4 4 p pa x T−τ = , (7) 1 d da xT−τ = , (8) [ ]1 2 3 1 2 exp /U U Ua x T a T−τ = − (9) are relaxation rates of phonon scattering by grain bounda- ries, point defects, dislocation strain fields and three-phonon U-processes, respectively. As a matter of fact, normal processes are only signifi- cant for the thermal conductivity of crystals of high quality and at low temperatures [13]. Otherwise, the normal proc- esses are much less frequent then other phonon scattering processes and do not contribute noticeably to the dielectric crystal heat transfer. Therefore, for strongly defected crys- tal, 1 n −τ can be neglected and then the Eq. (1) reduces to the so-called expression of Debye: ( ) /3 4 3 2 2 0 e 2 e 1 T x CB B x xk kk T dx v θ τ =    π − ∫  . (10) We have fitted the Debye equation, by varying ia pa- rameters of relaxation times (6)–(9), to the experimentally obtained data of the thermal conductivity temperature de- pendence of the nanocomposites. The results of the best match for samples of solid CO containing palladium nano- particles were shown in Fig. 1 by solid black lines and the parameters were collected in Table 1. The same information, displayed in the same way, for the CO crystal with silica nanoparticles embedded in its structure was given in Fig. 3 and Table 2. Table 1. Best fit phonon relaxation rate parameters obtained by Debye equation for the CO crystals containing palladium nanoparticles. In the fitting procedure scattering of phonons by crystal grain boundaries (ab), point defects (ap), dislocation strain fields (ad) and by phonons in U-processes (aU1, aU2) were taken into account Nanocomposite Parameter ab ap ad aU1 aU2 CO+Pd (6 nm) 5.61·108 1.31·104 2.23·106 1.27·107 19.9 CO+Pd (8 nm) 3.55·109 1.83·104 1.00·106 6.07·106 6.0 CO+Pd (10 nm) 3.14·108 1.11·104 1.79·107 1.08·107 18.0 CO+Pd (12 nm) 3.09·108 1.17·104 2.93·106 1.11·107 21.2 CO+Pd (18 nm) 1.67·108 1.27·104 3.08·105 9.87·106 21.1 Table 2. Values of the parameters ab, ap, ad, aU1, aU2 of equa- tion (10), for which the experimentally obtained dependence of the thermal conductivity of the investigated nanocomposites is best approximated Nanocomposite Parameter ab ap ad aU1 aU2 Pure CO 2.47·104 3.81·104 1.21·104 7.27·106 32.8 CO+SiO2 (5 nm) 1.88·108 1.78·104 1.82·106 1.91·107 25.6 CO+SiO2 (18 nm) 1.85·108 2.09·104 2.02·105 1.03·107 26.2 CO+SiO2 (42 nm) 2.92·108 2.81·104 2.72·106 1.33·107 24.1 CO+SiO2 (162 nm) 1.81·108 3.54·104 6.35·106 2.05·107 26.6 The solid lines in Figs. 1 and 3 show that the approxima- tion of the experimental data with the applied thermal con- ductivity model is satisfactory. Therefore one can get some information from the analysis of the numerical values dis- played in Tables 1 and 2. First of all, it should be noticed that the effect of introduction of the nanoparticle into the structure of carbon monoxide crystalline matrix on phonon relaxation rates is qualitatively the same for both investi- gated nano-powders, palladium and silica. The most promi- nent effect is observed for scattering of phonons by grain boundaries. While for pure CO crystal 1 4~ 10b −τ s–1, for the nano-powder doped ones 1 8~ 10b −τ s–1. Such tremendous increase of frequency of phonon scattering in this mecha- nism should be understood as not caused by structural grain boundaries but rather diffuse scattering of phonons by boundary of the two media: carbon monoxide and palladium or silica. Point defect (Rayleigh) scattering is almost insensi- tive to the presence of the nanoparticles. This is because the nanoparticles can act as point defect only for long-wave phonons which do not contribute noticeably to the thermal 292 Low Temperature Physics/Fizika Nizkikh Temperatur, 2019, v. 45, No. 3 Influence of different nanoparticles embedded in crystalline carbon monoxide matrix on heat transfer in the nanocomposite conductivity, at least in the investigated temperature re- gion. The significant increase of da for the nanoparticles doped crystal relatively to the pure solid CO indicates that the presence of the nano-powders promotes creation of dislocations. Finally, the difference of 1Ua and 2Ua param- eters, between those obtain for pure carbon monoxide crys- tal and the investigated nanocomposites, may be related to the difference of pure and doped matrix lattice dynamics. Since 1Ua is considered as a measure of phonon interaction strength [14], the parameter bigger for the nanocomposite testify to higher anharmonicity of the lattice vibration while smaller 2Ua (being a measure of mean energy of a phonon taking part in U-process) to lowering of the maximum fre- quency vibrations of the matrix in such nanocomposites. In conclusion, nanocomposites built from carbon mon- oxide crystal with amorphous silica and palladium nano- powders of different size embedded in the crystal structure were obtained and determined their thermal conductivity coefficient dependence on temperature in the temperature range 2.2–35 K. Nano-impurities in the crystal cause a de- creasing of total thermal conductivity of investigated nano- composites compared to the pure crystal of carbon monox- ide. Analysis of the experimental results shows that the material of the sample matrix gives the decisive contribution to the thermal conductivity and that the low thermal conduc- tivity of the nanocomposites is caused mostly by scattering of phonons by boundaries of the nanoparticles. Acknowledgments This work was supported by the National Science Centre (Poland) grant nr. UMO-2013/08/M/ST3/00934. _______ 1. N. Mingo, D. Hauser, N.P. Kobayashi, M. Plissonnier, and A. Shakouri, Nano Lett. 9, 711 (2009). 2. P.E. Hopkins, J.C. Duda, C.W. Petz, and J.A. Floro, Phys. Rev. B 84, 035438 (2011). 3. B. Poudel, Q. Hao, Y. Ma, Y. Lan, A. Minnich, B. Yu, X. Yan, D. Wang, A. Muto, D. Vashaee, X. Chen, J. Liu, M.S. Dresselhaus, G. Chen, and Z. Ren, Science 320, 634 (2008). 4. W. Kim and A. Majumdar, J. Appl. Phys. 99, 084306 (2006). 5. L.A. Turk and P.G. Klemens, Phys. Rev. B 9, 4422 (1974). 6. R. Prasher, Int. J. Heat Mass Trans. 48, 4942 (2005). 7. R. Prasher, J. Heat Transf. 128, 627 (2006). 8. D.G. Cahill, P.V. Braun, G. Chen, D.R. Clarke, S. Fan, K.E. Goodson, P. Keblinski, W.P. King, G.D. Mahan, A. Majumdar, H.J. Maris, S.R. Phillpot, E. Pop, and L. Shi, Appl. Phys. Rev. 1, 011305 (2014). 9. V.G. Manzhelii and Yu.A. Freiman, Physics of Cryocrystals, AIP, Woodbury, NY (1997). 10. T. Romanova, P. Stachowiak, and A. Jeżowski, Solid State Comm. 197, 6 (2014). 11. R.V. Nikonkov, P. Stachowiak, T.V. Romanova, A. Jeżowski, and V.V. Sumarokov, Fiz. Nizk. Temp. 41, 625 (2015) [Low Temp. Phys. 41, 492 (2015)]. 12. J. Callaway, Phys. Rev. 113, 1046 (1959). 13. R. Berman, Thermal Conduction in Solids, Oxford, Clarendon Press (1976). 14. H.T. Weston and W.B. Daniels, Phys. Rev. B 29, 2709 (1984). ___________________________ Вплив наночастинок, введених в кристалічну матрицю монооксиду вуглецю, на теплопереніс в нанокомпозиті R.V. Nikonkov, P. Stachowiak, A. Jeżowski Наведено попередні результати досліджень теплоперено- су в нанокомпозитах, які містять наночастинки, що випадко- во розподілені у твердій матриці монооксиду вуглецю. Ме- тодом стаціонарного теплового потоку в температурному інтервалі 2,2–35 К визначено експериментальні залежності коефіцієнта теплопровідності від температури для кристале- вого СО, що містить наночастинки оксиду кремнію та пала- дію різних розмірів. Результати вимірювань проаналізовано в рамках апроксимації часу релаксації. Аналіз показує, що зниження теплопровідності нанокомпозитів щодо чистого кристала монооксиду вуглецю, яке спостерігається для дос- ліджених наночастинок паладію та оксиду кремнію, обумов- лено головним чином розсіюванням фононів на границях наночастинок. Крім того, наявність нановключень сприяє більш високій щільності дислокацій і впливає на динаміку гратки матриці. Ключові слова: нанокомпозит, теплопровідність, фононна релаксація. Влияние наночастиц, введенных в кристаллическую матрицу монооксида углерода, на теплоперенос в нанокомпозите R.V. Nikonkov, P. Stachowiak, A. Jeżowski Приведены предварительные результаты исследований теплопереноса в нанокомпозитах, содержащих наночастицы, случайным образом распределенные в твердой матрице мо- нооксида углерода. Методом стационарного теплового пото- ка в температурном интервале 2,2–35 К определены экспе- риментальные зависимости коэффициента теплопроводности от температуры для кристаллического СО, содержащего вне- дренные наночастицы оксида кремния и палладия различных размеров. Результаты измерений проанализированы в рамках аппроксимации времени релаксации. Анализ показывает, что понижение теплопроводности нанокомпозитов относительно чистого кристалла монооксида углерода, наблюдаемое для исследуемых наночастиц палладия и оксида кремния, обу- словлено главным образом рассеянием фононов на границах наночастиц. Кроме того, наличие нановключений способст- вует более высокой плотности дислокаций и влияет на дина- мику решетки матрицы. Ключевые слова: нанокомпозит, теплопроводность, фонон- ная релаксация. Low Temperature Physics/Fizika Nizkikh Temperatur, 2019, v. 45, No. 3 293 https://doi.org/10.1021/nl8031982 https://doi.org/10.1103/PhysRevB.84.035438 https://doi.org/10.1103/PhysRevB.84.035438 https://doi.org/10.1126/science.1156446 https://doi.org/10.1063/1.2188251 https://doi.org/10.1103/PhysRevB.9.4422 https://doi.org/10.1016/j.ijheatmasstransfer.2005.04.034 https://doi.org/10.1115/1.2194036 https://doi.org/10.1063/1.4832615 https://doi.org/10.1016/j.ssc.2014.07.020 https://doi.org/10.1016/j.ssc.2014.07.020 https://doi.org/10.1063/1.4922106 https://doi.org/10.1063/1.4922106 https://doi.org/10.1103/PhysRev.113.1046 https://doi.org/10.1103/PhysRevB.29.2709 Introduction Experiment Results Acknowledgments