Studies of charging mechanisms in impurity-helium condensates by means of impedance spectroscopy and current spectroscopy
A new simple experimental technique has been elaborated to test applicability of impedance spectroscopy for studying processes during destruction of impurity-helium condensates. Combination of methods of optical spectroscopy, impedance spectroscopy and current spectroscopy to study the destruction...
Збережено в:
Дата: | 2019 |
---|---|
Автори: | , , , |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна НАН України
2019
|
Назва видання: | Физика низких температур |
Теми: | |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/175957 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Studies of charging mechanisms in impurity-helium condensates by means of impedance spectroscopy and current spectroscopy / A.A. Pelmenev, I.B. Bykhalo, I.N. Krushinskaya, R.E. Boltnev // Физика низких температур. — 2019. — Т. 45, № 3. — С. 318-324. — Бібліогр.: 49 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-175957 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1759572021-02-04T01:31:20Z Studies of charging mechanisms in impurity-helium condensates by means of impedance spectroscopy and current spectroscopy Pelmenev, A.A. Bykhalo, I.B. Krushinskaya, I.N. Boltnev, R.E. Спеціальний випуск. “Proceedings of 12th International Conference on Cryocrystals and Quantum Crystals (CC-2018)” (Wrocław, Poland, August 26–31, 2018) A new simple experimental technique has been elaborated to test applicability of impedance spectroscopy for studying processes during destruction of impurity-helium condensates. Combination of methods of optical spectroscopy, impedance spectroscopy and current spectroscopy to study the destruction processes of impurityhelium condensates has been applied for the first time. Experimental data have demonstrated a rather good sensitivity of the technique and proved formation of charged clusters during a destruction stage of impurity-helium condensates. Просту експериментальну методику розроблено та успішно випробувано для використання можливостей спектроскопії імпедансу при дослідженні процесів на стадії руйнування зразків домішково-гелієвих конденсатів. Вперше використано комбінацію методів спектроскопії імпедансу, струмової спектроскопії та оптичної спектроскопії для дослідження руйнування домішково-гелієвих конденсатів. Отримані результати показали високу чутливість нової методики та підтвердили появу зарядів (заряджених нанокластерів) на стадії руйнування домішково-гелієвих конденсатів. Ключові слова: нанокластери, домі Простая экспериментальная методика разработана и успешно опробована для использования возможностей спектроскопии импеданса при исследовании процессов на стадии разрушения образцов примесь-гелиевых конденсатов. Впервые использована комбинация методов спектроскопии импеданса, токовой спектроскопии и оптической спектроскопии для исследования разрушения примесь-гелиевых конденсатов. Полученные результаты показали высокую чувствительность новой методики и подтвердили появление зарядов (заряженных нанокластеров) на стадии разрушения примесьгелиевых конденсатов. 2019 Article Studies of charging mechanisms in impurity-helium condensates by means of impedance spectroscopy and current spectroscopy / A.A. Pelmenev, I.B. Bykhalo, I.N. Krushinskaya, R.E. Boltnev // Физика низких температур. — 2019. — Т. 45, № 3. — С. 318-324. — Бібліогр.: 49 назв. — англ. 0132-6414 http://dspace.nbuv.gov.ua/handle/123456789/175957 en Физика низких температур Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
topic |
Спеціальний випуск. “Proceedings of 12th International Conference on Cryocrystals and Quantum Crystals (CC-2018)” (Wrocław, Poland, August 26–31, 2018) Спеціальний випуск. “Proceedings of 12th International Conference on Cryocrystals and Quantum Crystals (CC-2018)” (Wrocław, Poland, August 26–31, 2018) |
spellingShingle |
Спеціальний випуск. “Proceedings of 12th International Conference on Cryocrystals and Quantum Crystals (CC-2018)” (Wrocław, Poland, August 26–31, 2018) Спеціальний випуск. “Proceedings of 12th International Conference on Cryocrystals and Quantum Crystals (CC-2018)” (Wrocław, Poland, August 26–31, 2018) Pelmenev, A.A. Bykhalo, I.B. Krushinskaya, I.N. Boltnev, R.E. Studies of charging mechanisms in impurity-helium condensates by means of impedance spectroscopy and current spectroscopy Физика низких температур |
description |
A new simple experimental technique has been elaborated to test applicability of impedance spectroscopy for
studying processes during destruction of impurity-helium condensates. Combination of methods of optical spectroscopy, impedance spectroscopy and current spectroscopy to study the destruction processes of impurityhelium condensates has been applied for the first time. Experimental data have demonstrated a rather good sensitivity of the technique and proved formation of charged clusters during a destruction stage of impurity-helium
condensates. |
format |
Article |
author |
Pelmenev, A.A. Bykhalo, I.B. Krushinskaya, I.N. Boltnev, R.E. |
author_facet |
Pelmenev, A.A. Bykhalo, I.B. Krushinskaya, I.N. Boltnev, R.E. |
author_sort |
Pelmenev, A.A. |
title |
Studies of charging mechanisms in impurity-helium condensates by means of impedance spectroscopy and current spectroscopy |
title_short |
Studies of charging mechanisms in impurity-helium condensates by means of impedance spectroscopy and current spectroscopy |
title_full |
Studies of charging mechanisms in impurity-helium condensates by means of impedance spectroscopy and current spectroscopy |
title_fullStr |
Studies of charging mechanisms in impurity-helium condensates by means of impedance spectroscopy and current spectroscopy |
title_full_unstemmed |
Studies of charging mechanisms in impurity-helium condensates by means of impedance spectroscopy and current spectroscopy |
title_sort |
studies of charging mechanisms in impurity-helium condensates by means of impedance spectroscopy and current spectroscopy |
publisher |
Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна НАН України |
publishDate |
2019 |
topic_facet |
Спеціальний випуск. “Proceedings of 12th International Conference on Cryocrystals and Quantum Crystals (CC-2018)” (Wrocław, Poland, August 26–31, 2018) |
url |
http://dspace.nbuv.gov.ua/handle/123456789/175957 |
citation_txt |
Studies of charging mechanisms in impurity-helium condensates by means of impedance spectroscopy and current spectroscopy / A.A. Pelmenev, I.B. Bykhalo, I.N. Krushinskaya, R.E. Boltnev // Физика низких температур. — 2019. — Т. 45, № 3. — С. 318-324. — Бібліогр.: 49 назв. — англ. |
series |
Физика низких температур |
work_keys_str_mv |
AT pelmenevaa studiesofchargingmechanismsinimpurityheliumcondensatesbymeansofimpedancespectroscopyandcurrentspectroscopy AT bykhaloib studiesofchargingmechanismsinimpurityheliumcondensatesbymeansofimpedancespectroscopyandcurrentspectroscopy AT krushinskayain studiesofchargingmechanismsinimpurityheliumcondensatesbymeansofimpedancespectroscopyandcurrentspectroscopy AT boltnevre studiesofchargingmechanismsinimpurityheliumcondensatesbymeansofimpedancespectroscopyandcurrentspectroscopy |
first_indexed |
2025-07-15T13:34:06Z |
last_indexed |
2025-07-15T13:34:06Z |
_version_ |
1837720085946433536 |
fulltext |
Low Temperature Physics/Fizika Nizkikh Temperatur, 2019, v. 45, No. 3, pp. 318–324
Studies of charging mechanisms in impurity-helium
condensates by means of impedance spectroscopy and
current spectroscopy
A.A. Pelmenev1,2, I.B. Bykhalo1, I.N. Krushinskaya1, and R.E. Boltnev1,3
1Branch of Talroze Institute for Energy Problems of Chemical Physics RAS, Chernogolovka 142432, Russia
2L.D. Landau Institute of Theoretical Physics RAS, Chernogolovka 142432, Russia
3Joint Institute for High Temperatures RAS, Moscow 125412, Russia
E-mail: pelmenevaa@ gmail.com; boltnev@gmail.com
Received October 24, 2018
A new simple experimental technique has been elaborated to test applicability of impedance spectroscopy for
studying processes during destruction of impurity-helium condensates. Combination of methods of optical spec-
troscopy, impedance spectroscopy and current spectroscopy to study the destruction processes of impurity-
helium condensates has been applied for the first time. Experimental data have demonstrated a rather good sensi-
tivity of the technique and proved formation of charged clusters during a destruction stage of impurity-helium
condensates.
Keywords: nanoclusters, impurity-helium condensates, impedance spectroscopy, superfluid helium, stabilization
of ions and radicals.
1. Introduction
The results of recent studies on reactions N + NH3 in
solid nitrogen films [1] have shown that upon a deposition
of nitrogen gas passed through microwave discharge onto a
cold surface at 3 K up to 8% of nitrogen atoms form other
species than N2 in solid films. Such species may be neutral
or charged, atomic or molecular. The most studied species
is atomic nitrogen observable in solid films in each of the
lowest states 4S, 2D, and 2P [2–4]. Neutral and ionic mo-
lecular species + + - +
2 3 3 3 4N , N , N , N , N , were detected and
studied in solid nitrogen films and nanoclusters [5–15]. A
cation +
5N has been synthesized as a part of compound
[16,17]. There are some detailed reviews of experimental
and theoretical works on polynitrogen compounds in the
literature [18–21]. Recently the nitrogen anion N– has been
observed in clusters of molecular nitrogen and rare gases
during destruction of impurity-helium condensates [22].
Impurity-helium condensates are highly porous aerogel-
like materials formed in the bulk superfluid helium (He II)
due to aggregation of impurity nanoclusters [23–26].
Nanoclusters grow in a gas helium jet due to association of
impurity particles (atoms and molecules) upon fast cooling
(~ 105 K/s) of the gas jet impinging the He II surface by
cold (T = 1.5 K) helium vapors [27,28]. Atoms of heavier
noble gases (Ne and Xe) as well as molecules of N
2
and
NO were used as impurities at the level of 0.1–1% to heli-
um gas. A gas mixture passage through a radio frequency
(RF) discharge area permits to produce radicals, ions, met-
astable atoms and molecules by excitation of atoms and
molecules and dissociation of impurity molecules. Trap-
ping of radicals on nanocluster surface allows to store high
concentrations of stabilized nitrogen and hydrogen atoms
[26,29–32]. Intense luminescence and current pulses ac-
company destructions of impurity-helium condensate
(IHC) samples containing high densities of stabilized ni-
trogen atoms [22,33–35]. Two possible mechanisms of
charging impurity nanoclusters were suggested to explain
observations of the current pulses [35].
In this paper we present new experimental results ob-
tained by dielectric spectroscopy methods during destruc-
tion stage of impurity-helium condensates. A simple exper-
imental technique has been elaborated and manufactured
for these purposes. The new results are in good accordance
with results obtained earlier by means of optical spectros-
copy and current spectroscopy. We have got clear proves
that the clusters were charged due to an intense recombina-
tion of nitrogen atoms during the IHC sample destruction
producing excited molecules N2(A3Σ) which capture elec-
trons from a substrate and charge the sample fragments
[36–38]. Unfortunately, we were unable to get frequency
dependence of IHC samples impedance due to destruction
© A.A. Pelmenev, I.B. Bykhalo, I.N. Krushinskaya, and R.E. Boltnev, 2019
Studies of charging mechanisms in impurity-helium condensates by means of impedance spectroscopy
transiency of samples. Therefore, we were not able to de-
tect ions trapped in nanoclusters. Experimental data
demonstrate a rather good sensitivity of the technique and
its applicability for studies of processes in either molecular
nitrogen or rare gas cryofilms stimulated either by energet-
ic particles or by VUV photons.
2. Experimental setup
The method of helium gas jet injection into the He II
bulk [39] was used for IHC sample preparation. Our exper-
imental setup has been described elsewhere [31,32]. The
cryogenic part of the experimental setup consists of two
glass double-walled silvered Dewars. The outer Dewar was
filled with liquid nitrogen, and the inner Dewar was filled
with liquid helium. The gas mixture consisting of helium
and impurity particles (0.1–1%) enters (with the gas jet
flux about of 4⋅1019 particles/s) the inner Dewar via a
quartz capillary cooled by liquid nitrogen. A radio fre-
quency discharge was used for dissociation of impurity
molecules and excitation of atoms and molecules. Electrodes
placed around the quartz capillary provided a 40 MHz, 40 W
RF discharge. A gas jet was directed onto the He II surface
in a glass beaker placed below the source at the distance of
25 mm (Fig. 1(a)). The steady-state level of He II in the
beaker (with an inner diameter of 22 mm) was maintained
by a fountain pump located in the liquid helium bath at the
bottom of the inner Dewar.
A spectrometer AvaSpec-ULS2048XL-USB2 allowed
us to detect emission within the spectral range from 200 to
1160 nm with resolution ≈ 2.5 nm. Emission from IHC
sample under study was fed to the spectrometer by means
of optical fibers and vacuum feedthrough. The pressure of
helium vapor in the glass Dewar within the range 0−10 kPa
was measured with a Rosemount gauge 3051TA2. The
thermometer, a RuO2-chip attached to the sensor surface
(Fig. 2), was used for temperature measurements in the
beaker. Ion currents accompanying the destruction of IHC
samples were detected by a ring-shape electrode (Fig. 2(b))
connected directly to a picoammeter Keithley 6485.
To measure an impedance of IHC samples under study
have a planar capacitive sensor had been chosen (Fig. 2).
Capacitive sensors are often used for dielectric spectrosco-
py because of their high measurement accuracy and non-
invasiveness. The way of IHC sample preparation excludes
a possibility to use the simplest versions of such sensors:
parallel-plate capacitor and a coaxial cylindrical capacitor.
Fringing electric field sensor adopted to the beaker cross-
section has been elaborated and hand-made. The main
drawback of such a construction is the small penetration
length of fringing electric field sensors. The penetration
length is comparable with the distance between coplanar
electrodes, 0.5 mm (Fig. 2(a)). An external USB sound
card ESI UGM96 (2 independent mono Hi-Z inputs and 2
analog output channels, 24-bit/96 kHz) was used as a si-
nusoidal signal source (the amplitude 5 V) and 2-channel
analog-to-digital convertor of an impedance bridge. Such a
bridge using the LMS (least mean square) algorithm is
suitable for real-time impedance measurements [40]. Free
software Visual Analyser [41] was used for data acquisi-
tion during experiment. Impedance consists of two parts: a
real (resistive) part and an imaginary (reactive) part. The
measurement results will be shown as the resistance, R,
and capacity, C, corresponding to real and imaginary parts,
respectively. The capacity of the empty sensor was equal
to 4.83 pF at room temperature. The capacitance of wires
to the sound card was about of 26.65 pF.
Fig. 1. IHC sample accumulation: gas jet impinging the He II surface (1); glass beaker filled with superfluid helium (2); capacitive sen-
sor (3) (a); glowing fragments of IHC sample during its destruction (b); explosion of the sample fragments (c).
Low Temperature Physics/Fizika Nizkikh Temperatur, 2019, v. 45, No. 3 319
A.A. Pelmenev, I.B. Bykhalo, I.N. Krushinskaya, and R.E. Boltnev
This acquisition system allowed us to work with the sat-
isfactory signal/noise ratio within the frequency range
500 Hz–20 kHz. The whole frequency sweep took about of
300 s. We measured the sample impedance every 0.4 s at
fixed frequency (equal 2.7 or 3 kHz) because of the time
restriction during sample destruction. These frequency
values were chosen because of the best signal/noise ratio
obtained and the shortest time needed for the bridge bal-
ance settling.
The efficient length (penetration length) of the sensor
has been estimated as 0.55 mm by slow moving (with a step-
per motor) a special glass plate away from its surface. The
work area of the sensor is about of 2.54 cm2, therefore, the
efficient volume of the sensor was equal to 0.14 cm3.
We weren’t able to make measurements of the tempera-
ture, current and impedance during RF discharge applica-
tion because of strong electric field interference.
3. Experimental results
First of all, we have determined the capacity of the
empty sensor at helium temperatures. The sensor capacity,
C, is proportional to С0ε, where С0 is a geometric factor of
the sensor, and ε is the dielectric constant (also commonly
known as the relative permittivity) of material. We have
measured the capacity values, Cl and Cg, at 1.5 K for the
sensor in He II, εl = 1.0573 [42], and in helium gas, εg ≈ 1.
Then we have determined the sensor capacity
С0 = Cg = ΔС/Δε = (Cl – Cg)/(εl – εg) =
= 0.247/0.0573 = 4.31 pF.
The temporal dependences of the temperature, pressure,
luminescence intensity, current, capacity, and resistance dur-
ing a destruction of sample prepared from [N2]/[He]=1/200
gas mixture are shown in Fig. 3. One can see from the
pressure dynamics (Fig. 3(a)) that liquid helium evaporated
from the beaker (there was no liquid helium in the helium
Dewar) at t ≈ 40 s. After this moment sharp changes of the
pressure reflected collapse of the sample and were accom-
panied with changes of the other parameters measured.
Luminescence spectrum integrated during destruction
of this sample is shown in Fig. 4. The Vegard−Kaplan
(VK) bands relate to transitions 3 1
u gA X+ +Σ − Σ of mole-
cules N2. The α- and δ-groups of N atoms correspond to
the transitions 2D–4S and 2P–2D. The β-group of O atoms
matches to the transition 1S–1D. Some additional features
have been observed in the spectrum of the most intense
flash during the sample destruction. The band at 360 nm
has been recently attributed to polynitrogen molecule N4
[15]. The bands at 291, 307, and 323 nm correspond to the
well known transitions of the β-system of NO molecules.
We observe the spectra of atomic oxygen and molecules
containing O atoms because a helium gas used for experi-
ments contains molecular oxygen as impurity at the level
of a few ppm.
The temporal dependences of the temperature, pressure,
luminescence intensity, current, capacity, and resistance dur-
ing a destruction of sample prepared from [NO]/[Ne]/[He] =
= 1/100/50000 gas mixture are shown in Fig. 5. One can
Fig. 2. Size and geometry of the capacitive sensor (a); positions of the
ion collector (1) and the sensor (3) above/in the beaker (2) (b).
Fig. 3. (Color online) Destruction of sample prepared from
[N2]/[He] = 1/200 gas mixture: temporal dependences of the tem-
perature (red squares, 1) and pressure (green line, 2) (a); temporal
dependences of the luminescence intensity (red stars, 3) and cur-
rent (blue diamonds, 4) (b); temporal dependences of the capacity
(blue circles, 5) and resistance (green triangles, 6) (c).
320 Low Temperature Physics/Fizika Nizkikh Temperatur, 2019, v. 45, No. 3
Studies of charging mechanisms in impurity-helium condensates by means of impedance spectroscopy
see from the pressure dynamics (Fig. 4(a)) that liquid
helium evaporated from the beaker at t ≈ 35 s. After this
moment the pressure value is determined by evaporation of
helium atoms from weakly-bound shells of helium around
impurity clusters [31,43] and deviate from the saturated
vapor pressure values at corresponding temperatures. The temporal dependences of the temperature, lumines-
cence intensity, capacity, and resistance during a destruc-
tion of sample prepared from [N2]/[Xe]/[He] = 1/1/400 gas
mixture are shown in Fig. 6. It is worth noting very strong
responses of both parts of the impedance during explosions
of the samples. For instance, the changes of the sensor ca-
pacity was about two order of magnitude larger than in the
previous cases (Figs. 3 and 5). Samples formed from xen-
on–nitrogen–helium gas mixtures are very energetic and
begin to destroy even in the bulk He II [30,33]. The first
and second explosions (at t = 22 and 46 s in Fig. 6(a), re-
spectively) occurred when the sample fragments were on
the sensor surface. The third and forth flashes correspond
to explosions of the sample fragments located below the
sensor. That is a reason why these explosions made much
weaker responses of the sensor.
The luminescence spectrum of the second explosion is
shown in Fig. 7. The “green bands” correspond to the
1 12 ,0 1 ,v′′Σ − Σ transitions of XeO*, whereas the band at
595 nm can be associated with the transitions
+ 1 + 1– ( )Xe O 3 Σ –Xe (O 2 Σ) or 1 1*XeO 2 Σ–1( Δ) [44]. The
very broad band peaked at 720 nm is a combination of two
bands [44]. The first, at 690 nm, was associated with the
transition 1 3 )1( XΠ − Π of the XeO* molecule [44]. The
second band matches well to the spectrum produced by an
1O( S) atom at the xenon crystal surface [45].
4. Discussion
Due to inhomogeneous increase of the temperature
within the beaker, different parts (fragments) of the sample
explode at different time moments. We can see that the ion
Fig. 4. (Color online) Luminescence spectrum integrated during
destruction of sample prepared from [N2]/[He] = 1/200 gas mix-
ture. The spectrum of the most intense flash is shown in the inset.
Fig. 5. (Color online) Destruction of sample prepared from
[NO]/[Ne]/[He] = 1/100/50000 gas mixture: temporal dependences
of the temperature (red squares, 1) and pressure (green line, 2) (a);
temporal dependences of the luminescence intensity (red stars, 3)
and current (blue diamonds, 4) (b); temporal dependences of the
capacity (blue circles, 5) and resistance (green triangles, 6) (c).
Fig. 6. (Color online) Destruction of sample prepared from
[N2]/[Xe]/[He] = 1/1/400 gas mixture: temporal dependences of
the temperature (red line, 1) and luminescence intensity (blue
stars, 2) (a); temporal dependences of the capacity (blue circles, 3)
and resistance (green line, 4) (b).
Low Temperature Physics/Fizika Nizkikh Temperatur, 2019, v. 45, No. 3 321
200 400 600 800 1000
0
1
2
3
4
b-group
b-group
d-group
d-group
Wavelength, nm
N2, VK bands N , VK bands
and
2
a-group
a-group
400 600 800 1000
0
400
800
1200
N4 band
NO b-bands
In
te
gr
at
ed
E
m
is
si
on
, 1
04 c
ou
nt
s
A.A. Pelmenev, I.B. Bykhalo, I.N. Krushinskaya, and R.E. Boltnev
collector detects some signals for every explosion (Figs. 3
and 4) while the planar sensor does either fragment explosions
or evaporation of He II, sublimation/deposition of impurity
matter occurring exclusively within its efficient volume.
We have observed some bright flashes during destruc-
tion the sample prepared from [N2]/[Xe]/[He] = 1/1/400
gas mixture (Fig. 1(c)). The sensor capacity peak changes
equal to 1.36 pF has been detected during the explosion
of small fragments of the sample with a total volume
about of 0.02 cm3 shown in Fig. 1(c) (the corresponding
impedance changes are shown in Fig. 6(b) at t = 49 s).
The dielectric constant changes have been estimated as
ΔС/С0 = 1.36/4.31 = 0.317, and Δε = 0.317. The atomic
polarizabilities of xenon, nitrogen, and helium are equal to
4.122, 1.13, and 0.205 Å3, correspondingly [46]. The
polarizability of molecular nitrogen is equal to 1.74 Å3 [46].
Let’s estimate the density of xenon equivalent to the
capacity peak changes 1.36 pF following to the Clausius–
Mossotti relation:
( 1) 3
( 2) 4 A
M
N
ε −
ρ =
ε + π α ⋅
,
where α — the atomic polarizability of xenon, AN — Avo-
gadro’s number, М — molar mass of xenon, 131.3 g/mol.
Keeping in the mind the efficient volume of the sensor,
0.14 cm3, we determine the number of xenon atoms in this
volume as N = 7.75⋅1020. The value obtained is much larg-
er than a total quantity of Xe atoms (and N2 molecules)
released during the sample preparation ≈ 1.7⋅1020 and the
sample volume was many times larger than its fragment
volume. Therefore, we can explain the changes of the die-
lectric permittivity by appearance of either excited or ion-
ized particles within the efficient volume of the sensor.
In the optical spectrum of the explosion, the
Vegard−Kaplan bands of N2* molecules, the bands at 595
and 720 nm, as well as the “green bands” of XeO* mole-
cules, and the α- and δ-groups of N atoms, and the β-group
of O atoms had been observed (Fig. 7). We have no direct
spectroscopic observations of ionic species during the
sample destruction (Fig. 7) in contrary to some sharp de-
creases of a real part of the impedance (Fig. 6(b)). Mean-
while the current pulses detected during destructions of
IHC samples correspond to charged fragments of the sam-
ples under study. As it has been discussed before, there are
two possible ways of charging impurity clusters: electrons
and positive ions are trapped by the nanoclusters growing
in cold helium gas jet passed through a radiofrequency
discharge; intense recombination of nitrogen atoms during
the IHC sample destruction produces excited molecules
N2(A3Σ) which capture electrons from a substrate [36–38]
and charge the sample fragments up to 104 elementary
charges [35]. The molecules N2(A3Σ) are always detected
through their emission (the Vegard–Kaplan bands) during
destruction of impurity-helium condensates containing
nitrogen, for example, Figs. 5 and 7. These metastable
molecules are responsible for excitation of nitrogen and
oxygen atoms stabilized in nitrogen matrix [47] and
nanoclusters [48], as well as of NO molecules [49] in a
nitrogen matrix. Excited NO molecules can be formed also
in result of recombination of O and N atoms.
We can summarize that application of impedance spec-
troscopy for studying impurity-helium condensates have
some restrictions: the high porosity, > 90%, of IHC sam-
ples [25,26,28,43], and their collapse into non-flat frag-
ments upon liquid helium evaporation [43] strongly affect
the sensitivity of the methods. Nevertheless, the results
obtained by this way are in good accordance with the data
of optical and current spectroscopy. Moreover, the imped-
ance is very responsive to processes accompanied with
material sublimation/deposition and appearance of ions in
the efficient volume of the planar sensor. Frequency weep-
ing can give more information on ions trapped in conden-
sates. Thus we suggest that impedance spectroscopy is very
promising tool to study processes initiated in cryofilms of
inert gases either by energetic particles [6,8–11,13,14] or by
VUV photons [7,12].
5. Conclusions
Impedance spectroscopy method has been successfully
applied for study of processes during destruction of impu-
rity-helium condensates.
New experimental results obtained by the method are in
good correlations with the results of optical spectroscopy
and current detection studies of impurity-helium conden-
sates. The results have proved the impurity clusters charg-
ing mechanism through capturing electrons from a sub-
strate by excited molecules N2(A3Σ) which are products of
intense recombination of nitrogen atoms during destruction
of impurity-helium condensates.
Fig. 7. (Color online) Luminescence spectrum detected during
destruction of sample prepared from [N2]/[Xe]/[He] = 1/1/400
gas mixture.
322 Low Temperature Physics/Fizika Nizkikh Temperatur, 2019, v. 45, No. 3
Studies of charging mechanisms in impurity-helium condensates by means of impedance spectroscopy
_______
1. S. Nourry and L. Krim, Phys. Chem. Chem. Phys. 18, 18493
(2016).
2. M.A. Heald and R. Beringer, Phys. Rev. 96, 645 (1954).
3. M. Peyron and H.P. Broida, J. Chem. Phys. 30, 139 (1959).
4. O. Oehler, D.A. Smith, and K. Dressler, J. Chem. Phys. 66,
2097 (1977).
5. A.E. Douglas and W.J. Jones, Canadian J. Phys. 43, 2216
(1965).
6. R. Tian and J. Michl, Faraday Discuss. Chem. Soc. 86, 113
(1988).
7. R. Tian, J.C. Facelli, and J. Michl, J. Phys. Chem. 92, 4073
(1988).
8. C.S. Jamieson and R.I. Kaiser, Chem. Phys. Lett. 440, 98
(2007).
9. J.C. Amicangelo, J.R. Collier, C.T. Dine, N.L. Saxton, and
R.M. Schleicher, Mol. Phys. 105, 989 (2007).
10. Y.-J. Wu, H.-F. Chen, S.-J. Chuang, and T.-P. Huang,
Astrophys. J. 779, 40 (2013).
11. E.V. Savchenko, I.V. Khyzhniy, S.A. Uyutnov, A.P.
Barabashov, G.B. Gumenchuk, M.K. Beyer, A.N. Ponomaryov,
and V.E. Bondybey, J. Phys. Chem. A 119, 2475 (2015).
12. J.-I. Lo, S.-L. Chou, Y.-C. Peng, M.-Y. Lin, H.-C. Lu, and
B.-M. Cheng, Astrophys. J. Supplement Series 221, 20 (2015).
13. E. Savchenko, I. Khyzhniy, S. Uyutnov, M. Bludov, G.
Gumenchuk, and V. Bondybey, Radiation Measurements 90,
1 (2016).
14. E. Savchenko, I. Khyzhniy, S. Uyutnov, M. Bludov, A.
Barabashov, G. Gumenchuk, and V. Bondybey, IOP Conf.
Series: Materials Science and Engineering 169, 012007 (2017).
15. P.T. McColgan, A. Meraki, R.E. Boltnev, D.M. Lee, and
V.V. Khmelenko, J. Phys. Chem. A 121, 9045 (2017).
16. K.O. Christe, W.W. Wilson, J.A. Sheehy, and J.A. Boatz,
Angew. Chemie, Int. Ed. 38, 2004 (1999).
17. A. Vij, W.W. Wilson, V. Vij, F.S. Tham, J.A. Sheehy, and
K.O. Christe, J. Am. Chem. Soc. 123, 6308 (2001).
18. M.T. Nguyen, Coord. Chem. Rev. 244, 93 (2003).
19. P.C. Samaritzis and A.M. Wodtke, Inter. Rev. Phys. Chem.
25, 527 (2006).
20. E.G. Lewars, Nitrogen Oligomers and Polymers: Superfuels
or Chimeras?, in: Modeling Marvels: Computational
Anticipation of Novel Molecules. Springer Science+Business
Media B.V. (2008).
21. V.E. Zarko, Combustion. Explos. Shock Waves 46, 121 (2010).
22. R.E. Boltnev, I.B. Bykhalo, I.N. Krushinskaya, A.A.
Pelmenev, S. Mao, A. Meraki, P.T. McColgan, D.M. Lee,
and V.V. Khmelenko, Phys. Chem. Chem. Phys. 18, 16013
(2016).
23. V. Kiryukhin, B. Keimer, R.E. Boltnev, V.V. Khmelenko,
and E.B. Gordon, Phys. Rev. Lett. 79, 1774 (1997).
24. S.I. Kiselev, V.V. Khmelenko, and D.M. Lee, Fiz. Nizk.
Temp. 26, 874 (2000) [Low Temp. Phys. 26, 641 (2000)].
25. S.I. Kiselev, V.V. Khmelenko, D.M. Lee, V. Kiryukhin, R.E.
Boltnev, E.B. Gordon, and B. Keimer, Phys. Rev. B 65,
024517 (2002).
26. R.E. Boltnev, I.N. Krushinskaya, A.A. Pelmenev, E.A.
Popov, D.Yu. Stolyarov, and V.V. Khmelenko, Fiz. Nizk.
Temp. 31, 723 (2005) [Low Temp. Phys. 31, 547 (2005)].
27. V. Kiryukhin, E.P. Bernard, V.V. Khmelenko, R.E. Boltnev,
N.V. Krainyukova, and D.M. Lee, Phys. Rev. Lett. 98,
195506 (2007).
28. N.V. Krainyukova, R.E. Boltnev, E.P. Bernard, V.V.
Khmelenko, D.M. Lee, and V. Kiryukhin, Phys. Rev. Lett.
109, 245505 (2012).
29. E.P. Bernard, R.E. Boltnev, V.V. Khmelenko, and D.M. Lee,
J. Low Temp. Phys. 134, 199 (2004).
30. A. Meraki, P.T. McColgan, R.E. Boltnev, D.M. Lee, and
V.V. Khmelenko, J. Low Temp. Phys. 192, 224 (2018).
31. E.P. Bernard, R.E. Boltnev, V.V. Khmelenko, V. Kiryukhin,
S.I. Kiselev, and D.M. Lee, Phys. Rev. B 69, 104201 (2004).
32. R.E. Boltnev, V.V. Khmelenko, and D.M. Lee, Fiz. Nizk.
Temp. 36, 484 (2010) [Low Temp. Phys. 36, 382 (2010)].
33. R.E. Boltnev, I.B. Bykhalo, I.N. Krushinskaya, A.A. Pelmenev,
V.V. Khmelenko, S. Mao, A. Meraki, S.C. Wilde, P.T.
McColgan, and D.M. Lee, J. Phys. Chem. A. 119, 2438 (2015).
34. I.N. Krushinskaya, R.E. Boltnev, I.B. Bykhalo, A.A.
Pelmenev, V.V. Khmelenko, and D.M. Lee, Fiz. Nizk. Temp.
41, 541 (2015) [Low Temp. Phys. 41, 419 (2015)].
35. A.A. Pelmenev, I.N. Krushinskaya, I.B. Bykhalo, and R.E.
Boltnev, Fiz. Nizk. Temp. 42, 289 (2016) [Low Temp. Phys.
42, 224 (2016)].
36. P. Stracke, F. Wiegershaus, S. Krischok, and V. Kempter,
Surf. Sci. 396, 212 (1998).
37. N. Lorente, D. Teillet-Billy, and J.-P. Gauyacq, Surf. Sci.
432, 155 (1999).
38. J. Marbach, F.X. Bronold, and H. Fehske, Eur. Phys. J. D
66, 106 (2012).
39. E.B. Gordon, L.P. Mezhov-Deglin, and O.F. Pugachev,
JETP Lett. 19, 63 (1974).
40. G. Steber, QEX 5, 41 (2005).
41. Visual Analyser Project at http://www.sillanumsoft.org/
42. R.J. Donnelly and C.F. Barenghi, J. Phys. Chem. Ref. Data
27, 1217 (1998).
43. R.E. Boltnev, E.B. Gordon, I.N. Krushinskaya, M.V.
Martynenko, A.A. Pelmenev, E.A. Popov, V.V. Khmelenko,
and A.F. Shestakov, Fiz. Nizk. Temp. 23, 753 (1997) [Low
Temp. Phys. 23, 567 (1997)].
44. A.G. Belov and E.M.Yurtaeva, Fiz. Nizk. Temp. 27, 1268
(2001) [Low Temp. Phys. 27, 938 (2001)].
45. W.G. Lawrence and V.A. Apkarian, J. Chem. Phys. 97, 2229
(1992).
46. A.A. Radtsig and B.M. Smirnov, Reference Data on Atoms,
Molecules, and Ions, Springer, Berlin (1985).
47. O. Oehler, D.A. Smith, and K. Dressler, J. Chem. Phys. 66,
2097 (1977).
48. V.V. Khmelenko, I.N. Krushinskaya, R.E. Boltnev, I.B.
Bykhalo, A.A. Pelmenev, and D.M. Lee, Fiz. Nizk. Temp.
38, 871 (2012) [Low Temp. Phys. 38, 688 (2012)].
49. L.G. Piper, L.M. Cowles, and W.T. Pawlins, J. Chem. Phys.
85, 3369 (1986).
___________________________
Low Temperature Physics/Fizika Nizkikh Temperatur, 2019, v. 45, No. 3 323
https://doi.org/10.1039/C6CP01621A
https://doi.org/10.1103/PhysRev.96.645
https://doi.org/10.1063/1.1729865
https://doi.org/10.1063/1.434171
https://doi.org/10.1139/p65-216
https://doi.org/10.1039/dc9888600113
https://doi.org/10.1021/j100325a018
https://doi.org/10.1016/j.cplett.2007.04.042
https://doi.org/10.1080/00268970701259328
https://doi.org/10.1088/0004-637X/779/1/40
https://doi.org/10.1021/jp5087575
https://doi.org/10.1088/0067-0049/221/1/20
https://doi.org/10.1016/j.radmeas.2015.12.044
https://doi.org/10.1021/acs.jpca.7b09661
https://doi.org/10.1002/(SICI)1521-3773(19990712)38:13/14%3c2004::AID-ANIE2004%3e3.0.CO;2-7
https://doi.org/10.1021/ja010141g
https://doi.org/10.1016/S0010-8545(03)00101-2
https://doi.org/10.1080/01442350600879319
https://doi.org/10.1007/s10573-010-0020-x
https://doi.org/10.1039/C6CP01080F
https://doi.org/10.1103/PhysRevLett.79.1774
https://doi.org/10.1063/1.1312389
https://doi.org/10.1103/PhysRevB.65.024517
https://doi.org/10.1063/1.2001631
https://doi.org/10.1103/PhysRevLett.98.195506
https://doi.org/10.1103/PhysRevLett.109.245505
https://doi.org/10.1023/B:JOLT.0000012556.69060.eb
https://doi.org/10.1007/s10909-018-1952-x
https://doi.org/10.1103/PhysRevB.69.104201
https://doi.org/10.1063/1.3432245
https://doi.org/10.1021/jp508534t
https://doi.org/10.1063/1.4922090
https://doi.org/10.1063/1.4942760
https://doi.org/10.1016/S0039-6028(97)00670-5
https://doi.org/10.1016/S0039-6028(99)00443-4
https://doi.org/10.1140/epjd/e2012-30014-8
https://doi.org/10.1063/1.556028
https://doi.org/10.1063/1.593424
https://doi.org/10.1063/1.593424
https://doi.org/10.1063/1.1421460
https://doi.org/10.1063/1.463114
https://doi.org/10.1063/1.434171
https://doi.org/10.1063/1.4745675
https://doi.org/10.1063/1.450958
A.A. Pelmenev, I.B. Bykhalo, I.N. Krushinskaya, and R.E. Boltnev
Дослідження механізмів зарядки домішково-
гелієвих конденсатів методами спектроскопії
імпедансу та струмової спектроскопії
А.А. Пельменьов, І.Б. Бихало, І.Н. Крушинська,
Р.Є. Болтнєв
Просту експериментальну методику розроблено та успішно
випробувано для використання можливостей спектроскопії
імпедансу при дослідженні процесів на стадії руйнування
зразків домішково-гелієвих конденсатів. Вперше використано
комбінацію методів спектроскопії імпедансу, струмової
спектроскопії та оптичної спектроскопії для дослідження руй-
нування домішково-гелієвих конденсатів. Отримані результати
показали високу чутливість нової методики та підтвердили поя-
ву зарядів (заряджених нанокластерів) на стадії руйнування
домішково-гелієвих конденсатів.
Ключові слова: нанокластери, домішково-гелієві конденсати,
спектроскопія імпедансу, надплинний гелій, стабілізація
іонів і радикалів.
Исследования механизмов зарядки примесь-
гелиевых конденсатов методами спектроскопии
импеданса и токовой спектроскопии
А.А. Пельменёв, И.Б. Быхало, И.Н. Крушинская,
Р.Е. Болтнев
Простая экспериментальная методика разработана и ус-
пешно опробована для использования возможностей спек-
троскопии импеданса при исследовании процессов на стадии
разрушения образцов примесь-гелиевых конденсатов. Впер-
вые использована комбинация методов спектроскопии импе-
данса, токовой спектроскопии и оптической спектроскопии
для исследования разрушения примесь-гелиевых конденса-
тов. Полученные результаты показали высокую чувствитель-
ность новой методики и подтвердили появление зарядов (за-
ряженных нанокластеров) на стадии разрушения примесь-
гелиевых конденсатов.
Ключевые слова: нанокластеры, примесь-гелиевые конденса-
ты, спектроскопия импеданса, сверхтекучий гелий, стабили-
зация ионов и радикалов.
324 Low Temperature Physics/Fizika Nizkikh Temperatur, 2019, v. 45, No. 3
1. Introduction
2. Experimental setup
3. Experimental results
4. Discussion
5. Conclusions
|