Absorption–desorption of carbon dioxide in carbon honeycombs at elevated temperatures
The recently synthesized honeycomb carbon allotrope has numerous potential applications, in particular for storage of gases inside carbon matrices. In this work this carbon form was experimentally studied in its denser form in order to estimate the upper temperature limit for keeping a gas inside...
Збережено в:
Дата: | 2019 |
---|---|
Автори: | , , |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна НАН України
2019
|
Назва видання: | Физика низких температур |
Теми: | |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/175961 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Absorption–desorption of carbon dioxide in carbon honeycombs at elevated temperatures / N.V. Krainyukova, Y. Bogdanov, B. Kuchta // Физика низких температур. — 2019. — Т. 45, № 3. — С. 371-376. — Бібліогр.: 30 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-175961 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1759612021-02-04T01:25:54Z Absorption–desorption of carbon dioxide in carbon honeycombs at elevated temperatures Krainyukova, N.V. Bogdanov, Y. Kuchta, B. Спеціальний випуск. “Proceedings of 12th International Conference on Cryocrystals and Quantum Crystals (CC-2018)” (Wrocław, Poland, August 26–31, 2018) The recently synthesized honeycomb carbon allotrope has numerous potential applications, in particular for storage of gases inside carbon matrices. In this work this carbon form was experimentally studied in its denser form in order to estimate the upper temperature limit for keeping a gas inside the cellular structure. Along with the previously reported random honeycombs of a zigzag type we have also revealed the densest armchair structure. The mechanism of absorption–desorption of carbon dioxide studied by means of high energy electron diffraction at low temperatures showed the two — stage character of the observed desorption at elevated temperatures. This effect is associated to the weaker or stronger bonding of molecules with pore walls depending on the specific configuration of channels with different sizes. We have found that complete desorption of CO₂ does not occur even at the temperatures about three times higher as compared with the sublimation point of carbon dioxide in our vacuum conditions. Нещодавно синтезований вуглецевий стільниковий алотроп має численні потенційні застосування, зокрема для зберігання газів всередині вуглецевих матриць. Таку вуглецеву форму було експериментально досліджено в її більш щільній формі, щоб оцінити верхню границю температури, при якій газ зберігається всередині пористої структури. Поряд з раніше запропонованими випадковими стільниками зиґзаґоподібного типу виявлено найбільш щільну структуру типу armchair. Механізм поглинання–десорбція діоксиду вуглецю, що досліджено за допомогою дифракції електронів високої енергії при низьких температурах, показав двохстадійний характер десорбції, який спостерігається при підвищенні температури. Цей ефект пов’язаний з більш слабким або більш сильним зв’язуванням молекул зі стінками пор в залежності від конкретної конфігурації каналів різного розміру. Виявлено, що повна десорбція СО₂ не відбувається навіть при температурах приблизно в три рази вищих у порівнянні з точкою сублімації вуглекислого газу в наших вакуумних умовах. Недавно синтезированный углеродный сотовый аллотроп имеет множество потенциальных применений, в частности для хранения газов внутри углеродных матриц. Такая углеродная форма была экспериментально исследована в ее более плотной форме, чтобы оценить верхний предел температуры, при которой газ сохраняется внутри ячеистой структуры. Наряду с ранее предложенными случайными сотами зигзагообразного типа обнаружена самая плотная структура типа armchair. Механизм поглощение–десорбция диоксида углерода, изучаемый с помощью дифракции электронов высокой энергии при низких температурах, показал двухстадийный характер наблюдаемой десорбции при повышении температуры. Этот эффект связан с более слабым или более сильным связыванием молекул со стенками пор в зависимости от конкретной конфигурации каналов разного размера. Обнаружено, что полная десорбция СО₂ не происходит даже при температурах примерно в три раза более высоких по сравнению с точкой сублимации углекислого газа в наших вакуумных условиях. 2019 Article Absorption–desorption of carbon dioxide in carbon honeycombs at elevated temperatures / N.V. Krainyukova, Y. Bogdanov, B. Kuchta // Физика низких температур. — 2019. — Т. 45, № 3. — С. 371-376. — Бібліогр.: 30 назв. — англ. 0132-6414 http://dspace.nbuv.gov.ua/handle/123456789/175961 en Физика низких температур Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
topic |
Спеціальний випуск. “Proceedings of 12th International Conference on Cryocrystals and Quantum Crystals (CC-2018)” (Wrocław, Poland, August 26–31, 2018) Спеціальний випуск. “Proceedings of 12th International Conference on Cryocrystals and Quantum Crystals (CC-2018)” (Wrocław, Poland, August 26–31, 2018) |
spellingShingle |
Спеціальний випуск. “Proceedings of 12th International Conference on Cryocrystals and Quantum Crystals (CC-2018)” (Wrocław, Poland, August 26–31, 2018) Спеціальний випуск. “Proceedings of 12th International Conference on Cryocrystals and Quantum Crystals (CC-2018)” (Wrocław, Poland, August 26–31, 2018) Krainyukova, N.V. Bogdanov, Y. Kuchta, B. Absorption–desorption of carbon dioxide in carbon honeycombs at elevated temperatures Физика низких температур |
description |
The recently synthesized honeycomb carbon allotrope has numerous potential applications, in particular for
storage of gases inside carbon matrices. In this work this carbon form was experimentally studied in its denser
form in order to estimate the upper temperature limit for keeping a gas inside the cellular structure. Along with
the previously reported random honeycombs of a zigzag type we have also revealed the densest armchair structure. The mechanism of absorption–desorption of carbon dioxide studied by means of high energy electron diffraction at low temperatures showed the two — stage character of the observed desorption at elevated temperatures. This effect is associated to the weaker or stronger bonding of molecules with pore walls depending on the
specific configuration of channels with different sizes. We have found that complete desorption of CO₂ does not
occur even at the temperatures about three times higher as compared with the sublimation point of carbon dioxide in our vacuum conditions. |
format |
Article |
author |
Krainyukova, N.V. Bogdanov, Y. Kuchta, B. |
author_facet |
Krainyukova, N.V. Bogdanov, Y. Kuchta, B. |
author_sort |
Krainyukova, N.V. |
title |
Absorption–desorption of carbon dioxide in carbon honeycombs at elevated temperatures |
title_short |
Absorption–desorption of carbon dioxide in carbon honeycombs at elevated temperatures |
title_full |
Absorption–desorption of carbon dioxide in carbon honeycombs at elevated temperatures |
title_fullStr |
Absorption–desorption of carbon dioxide in carbon honeycombs at elevated temperatures |
title_full_unstemmed |
Absorption–desorption of carbon dioxide in carbon honeycombs at elevated temperatures |
title_sort |
absorption–desorption of carbon dioxide in carbon honeycombs at elevated temperatures |
publisher |
Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна НАН України |
publishDate |
2019 |
topic_facet |
Спеціальний випуск. “Proceedings of 12th International Conference on Cryocrystals and Quantum Crystals (CC-2018)” (Wrocław, Poland, August 26–31, 2018) |
url |
http://dspace.nbuv.gov.ua/handle/123456789/175961 |
citation_txt |
Absorption–desorption of carbon dioxide in carbon honeycombs at elevated temperatures / N.V. Krainyukova, Y. Bogdanov, B. Kuchta // Физика низких температур. — 2019. — Т. 45, № 3. — С. 371-376. — Бібліогр.: 30 назв. — англ. |
series |
Физика низких температур |
work_keys_str_mv |
AT krainyukovanv absorptiondesorptionofcarbondioxideincarbonhoneycombsatelevatedtemperatures AT bogdanovy absorptiondesorptionofcarbondioxideincarbonhoneycombsatelevatedtemperatures AT kuchtab absorptiondesorptionofcarbondioxideincarbonhoneycombsatelevatedtemperatures |
first_indexed |
2025-07-15T13:34:24Z |
last_indexed |
2025-07-15T13:34:24Z |
_version_ |
1837720105409052672 |
fulltext |
Low Temperature Physics/Fizika Nizkikh Temperatur, 2019, v. 45, No. 3, pp. 371–376
Absorption–desorption of carbon dioxide
in carbon honeycombs at elevated temperatures
Nina V. Krainyukova1, Yuri Bogdanov1,2, and Bogdan Kuchta3,4
1B. Verkin Institute for Low Temperature Physics and Engineering of the National Academy of Sciences of Ukraine
47 Nauky Ave., Kharkiv 61103, Ukraine
E-mail: krainyukova@ilt.kharkov.ua
2National Technical University “Kharkiv Polytechnical Institute”, 2 Kyrpychova Str., Kharkiv 61002, Ukraine
3Université Aix-Marseille, CNRS, MADIREL, Marseille 13396, France
4Department of Physics and Astronomy, University of Missouri, Columbia MO, USA
Received October 24, 2018
The recently synthesized honeycomb carbon allotrope has numerous potential applications, in particular for
storage of gases inside carbon matrices. In this work this carbon form was experimentally studied in its denser
form in order to estimate the upper temperature limit for keeping a gas inside the cellular structure. Along with
the previously reported random honeycombs of a zigzag type we have also revealed the densest armchair struc-
ture. The mechanism of absorption–desorption of carbon dioxide studied by means of high energy electron dif-
fraction at low temperatures showed the two — stage character of the observed desorption at elevated tempera-
tures. This effect is associated to the weaker or stronger bonding of molecules with pore walls depending on the
specific configuration of channels with different sizes. We have found that complete desorption of CO2 does not
occur even at the temperatures about three times higher as compared with the sublimation point of carbon diox-
ide in our vacuum conditions.
Keywords: high-energy electron diffraction, gas absorption, carbon honeycombs.
1. Introduction
Many carbon allotropes such as fullerenes [1], nano-
tubes [2,3], peapods [4], “schwarzite” forms [5–7], carbon
nanowires [8], graphene [9] were discovered and intensive-
ly studied during the last few decades. The carbon-based
materials possess many potential applications in modern
and future technologies. Special attention was focused on
investigations [10–13] of light molecules absorption in
nanoporous materials. This process is used in technological
applications such as reduction of carbon dioxide emissions
by vehicles, molecular sieving or fuel cells. In spite of high
potential of hydrogen as a fuel, i.e., as a renewable and
environmentally friendly energy source, its application is
limited by the lack of simultaneously lightweight and effi-
cient storage volumes with the high gravimetric ratio be-
tween the weight of absorbed hydrogen and the total
weight of the system.
The recently synthesized carbon honeycomb structure [14]
is an exceptionally stable carbon allotrope. Absorption of
the heavier rare gases such as krypton and xenon in carbon
films obtained by deposition of vacuum sublimated graph-
ite was studied a few years earlier [15]. It was found in
particular that the levels of gas absorption attain 4–6% in
atomic count with respect to the number of carbon atoms
in such substrates. This is about twice higher as compared
with even theoretical values attainable in carbon nanotubes
[16,17]. However, the carbon honeycomb structure was
identified only when transmission electron microscopy and
the exhaustive structural analysis were applied [14]. Many
interesting details of these structures still require much
higher resolution technique.
In this work we study absorption with consequent de-
sorption of carbon dioxide in the denser carbon honey-
comb aiming to find the upper temperature limit for gas
desorption from this structure.
2. Carbon film preparation
As it was reported previously [14,18], in quest of low-
density carbon structures with numerous channels accessi-
© Nina V. Krainyukova, Yuri Bogdanov, and Bogdan Kuchta, 2019
Nina V. Krainyukova, Yuri Bogdanov, and Bogdan Kuchta
ble for gas absorption, we switched from the arc discharge
to pure sublimation of graphite rods thinned in their central
parts and heated by the electric current (Fig. 1).
In this method we allow only sublimation when the
weaker bonds between graphitic layers are destroyed while
sp2 links inside graphene-like planes are still preserved. In
this way we obtain graphene patches with tightly bonded
sp2 network. They can easily fly in vacuum and, according
to the theoretical prediction [19], may collide with previ-
ously deposited flat fragments in a way that they form right
or big enough angles with other patches which result in
formation of junction structures. Besides the small patches
tend to close dangling bonds at their edges that make the
“big angle” deposition with collision energetically more
favorable. For these reasons the parallel deposition proba-
bility is negligible in the total angle distribution. These
junction structures called in [14] “carbon honeycomb” (hc)
are different from those of common graphitic materials. In
carbon honeycombs two “wall-chiralities” (armchair — hcA
and zigzag — hcZ) may be formed, and the structures with
various widths of walls and therefore different densities of
such carbon materials can be synthesized [14,18–24].
In our preparation we varied the electric current be-
tween 65 and 85 A to choose the regime when denser films
form. In this way we expected to obtain the stronger bond-
ing of the absorbed gas with cell walls and to estimate the
upper temperature limit for keeping the gas inside the car-
bon honeycomb matrices.
Carbon films were deposited on cleaved single crystal
surface of NaCl and further were separated from salt by
means of floating in distilled water. Such films then were
put onto the copper grids with a cell size about 0.1 mm
transparent for electrons and were placed on the holder
inside the column of the diffraction setup.
3. Experimental
According to our previous findings the high absorption
ability of carbon films prepared by the method described
above and in more detail in [18] can be attained if a gas
(e.g., gaseous carbon dioxide) is first deposited on carbon
substrates inside the low-temperature cryostat well below
the sublimation points of polycrystalline films (Tsubl ~ 86 K
for considered CO2). The studies are performed with the
help of the high energy electron diffraction setup EMR-
100 supplied with the low-temperature cryostat. After dep-
osition good quality thin solid polycrystalline films with
distinct diffraction peaks formed. But when they are grad-
ually heated and kept slightly below the characteristic sub-
limation points, the strong diffraction peaks corresponding
to a polycrystalline state disappear, but distinct residual sig-
nals remain. These residual signals are still observed at tem-
peratures far above the sublimation points owing to physi-
cal absorption of gases with strong bonding in a carbon
matrix. We ascribe these features to specificity of compo-
sites formed from the gaseous phase when gas atoms are
strongly bonded inside carbon matrices after capillary fill-
ing at temperatures slightly below the sublimation points.
In our current experiment with CO2 the deposition tempera-
ture ~ 80 K was closer to the sublimation point and we ob-
served the absorption effect already during deposition.
4. The analysis method
The carbon films produced by the method described
above as well as composites based on carbon structures
filled with absorbed gases were studied by means of Trans-
mission High-Energy Electron Diffraction (THEED) in an
EMR-100 electron diffraction setup. These studies were sup-
ported by the advanced analysis of the obtained data [25].
In the precise analysis of diffraction patterns from car-
bon films (see the next section) the experimental intensities
Iexp(S) are compared with calculated values
2 2 2
calc calc,
1( ) exp ( ) ( )
(1 ) k k
k
I S u S f w I S
t
= −〈 〉 +
−
∑ , (1)
here 2u〈 〉 are the mean-square atomic displacements, f is
the atomic scattering factor for electrons, wk are the varied
probabilities of the presence of a structural fragment k
comprised of Nk atoms and
calc,
sin ( )2( ) mn
k
k mnm n k
Sr
I S
N Sr>
=
∑ (2)
is the Debye formula [26]. Here rmn is a distance between
a pair of atoms in a structural fragment k and 1k kw∑ = .
The value t (in contrast with isolated clusters [27]) charac-
terizes a fraction of atoms belonging to different fragments
whose oscillating terms with calc, ( )kI S (Eq. (2)) mutually
cancel each other in calc ( )I S (Eq. (1)) giving a contribu-
tion only in the monotonic term ~ f 2. The electron diffrac-
tion intensities Iexp are the functions of the scattering wave
vector 4 sin /S = π θ λ . Here, 2θ is the scattering angle,
and λ is the de Broglie wavelength of the electrons.
The calculated diffraction intensities are compared with
experiment by means of minimization of the reliability
factor
Fig. 1. The scheme of carbon sublimation from the graphitic rods
used for the carbon film preparation.
372 Low Temperature Physics/Fizika Nizkikh Temperatur, 2019, v. 45, No. 3
Absorption–desorption of carbon dioxide in carbon honeycombs at elevated temperatures
( )
exp calc
exp calc
S
S
I I
R
I I
−
=
+
∑
∑
, (3)
with respect to wk, here the summation over S is performed
with the step 0.02 Å–1.
5. The structure of carbon films
We tested previously [14,18] numerous structural com-
ponents including graphite, fullerenes, schwarzites, nano-
tubes in order to describe the S dependences of the diffrac-
tion intensities Iexp(S) from carbon films. We have found
in particular very limited contribution of differently sized
graphite fragments with their total amount not exceeding
~ 10% that is also confirmed in the presented study. Car-
bon nanotubes, whose probable appearance in our samples
could owe to the symbiosis with the carbon honeycomb
structures [14] have overall contribution wk as a rule not
exceeding 3–4%. The carbon honeycomb structures in ma-
jority prevailed under the proposed preparation conditions.
For this reason in the study described here we used only
honeycomb structures with addition of small pieces of gra-
phitic carbon for evaluation of its probable contribution.
The carbon honeycomb is not a single structure but is a
family of structures. The honeycomb hexagon side sizes
are 0 (2.5 1.5 ) NNa n r= + for a zigzag type structure; here
1.44 ÅNNr = is the nearest neighbor distance in a graphitic
layer and n is an integer. The total classification of the arm-
chair honeycombs is presented in [20].
In Fig. 2 we show the structures, which were found to
be the best candidates for the analysis of the experimental
diffractogram presented in Fig. 3(a) by means of the fitting
procedure described in the previous section. Usually three
broadened peaks can be identified in such diffractograms.
If we worked with glassy graphite their positions would
coincide with vertical lines in Fig. 3(a). The graphitic peaks
(100) and (110) correspond to relevant hexagonal spacing
inside the graphene plane while the peak (002) — to the
distance between graphitic layers. Therefore two peak po-
sitions (100) and (110) may also be expected in the honey-
combs as well since walls of these structures are essentially
graphene ribbons. But no distinct peak in the graphitic po-
sition (002) is visible. Instead at the noticeably smaller angle
we can see the well identified peak, which is close to the
(100) position of the hexagonal honeycomb lattice of an arm-
chair type (hcA1) although not exactly. The other honey-
combs presented in Fig. 2 also contribute to this peak at
a little smaller angles (or S).
The total distribution of all contributing structures over
cell sizes (a) is shown in Fig. 3(b). For graphite whose
Fig. 2. (Color online) The carbon structures corresponding to the
best-fit analysis of experimental diffraction intensities: the random
honeycomb of a zigzag type (hcZ) found previously in [14], a
fragment of a regular densest honeycomb structure also of a zig-
zag type (hcZn0) for n = 0 in a0 (see the text), the densest honey-
comb structure of an armchair type [20] first identified in our
experiment (hcA1, a is a parameter of the hexagonal honeycomb
lattice) and a small graphitic fragment (Gr), whose contribution to
the total diffraction intensity is ~ 5% (see Fig. 3).
Fig. 3. (Color online) The experimental and best-fit calculated
diffraction intensities for the carbon films specifically prepared as
described in the text to form the cellular structures of a honey-
comb type (a). Relative contributions of different structures found
from best-fit analysis and presented in Fig. 2(b).
Low Temperature Physics/Fizika Nizkikh Temperatur, 2019, v. 45, No. 3 373
Nina V. Krainyukova, Yuri Bogdanov, and Bogdan Kuchta
contribution was found ~ 5% we used here the interplanar
distance of 3.43 Å. It is obvious that the honeycomb struc-
tures are absolutely dominant in our study. In this work we
first identified the densest honeycomb structure of an arm-
chair type (hcA1) shown in Fig. 2.
6. The absorption–desorption effect
As it was described above intensive absorption of carbon
dioxide occurs when molecules are deposited on carbon
films prepared from vacuum sublimated graphite below the
sublimation temperature Tsubl. There were analyzed two
options. When we deposited gases well below Tsubl first a
good quality polycrystalline films with the intrinsic molec-
ular dynamics formed [14,18,28]. After gradual heating
and further keeping condensates a few degrees lower Tsubl
CO2 molecules were absorbed by the carbon supporting
films owing to fast diffusion and stronger interaction with
pore walls as compared with interaction between molecules
themselves. In this work we condense carbon dioxide at
~ 80 K, i.e., only a few degrees lower Tsubl, and intensive
absorption occurs already during deposition. Polycrystalline
peaks, which are initially well visible, fast disappear (Fig. 4).
We analyze further evolution of formed composites,
i.e., CO2 molecules absorbed in carbon honeycomb matri-
ces, under heating up to ~ 230 K considering a difference
between experimental intensities I from composites and
Isubs from a carbon substrate (Fig. 5). The absorbed gases
can be identified owing to the wide but well defined peak
attributed to molecules captured in the carbon honeycomb
matrices. This means that molecules are not randomly dis-
tributed in carbon matrix channels but form some kind of
short range order. The important question is how atoms
Fig. 4. (Color online) The diffraction intensities recorded during
deposition of carbon dioxide at ~ 80 K, which indicate fast ab-
sorption of the gas during condensation, and angle intensity de-
pendences (or on S) for formed composites as compared with
a carbon substrate at further heating.
Fig. 5. (Color online) An access of experimental diffraction intensities from composites formed by carbon dioxide absorbed in carbon
honeycomb matrices during deposition closely to Tsubl of CO2 in vacuum as compared with intensities from a carbon substrate. On the
right diffractograms are shifted along vertical to make details visible. A wide but well defined peak is attributed to molecules with short
range order captured in the carbon honeycomb matrices and is kept up to ~ 230 K that is about three times higher as compared with
Tsubl ~ 86 K.
374 Low Temperature Physics/Fizika Nizkikh Temperatur, 2019, v. 45, No. 3
Absorption–desorption of carbon dioxide in carbon honeycombs at elevated temperatures
and molecules can be distributed inside porous carbon ma-
trices. The exact answers can be obtained by direct model-
ing such composites applying, e.g., the Monte Carlo me-
thod [29,30].
During deposition along with the absorbate broad peak
we can see also distinct peaks from polycrystalline CO2
films. But these polycrystalline peaks fast disappear al-
ready at 82 K. The broad absorbate peak evolves with tem-
perature changing its form and height. It is most plausible
that this peak is a superposition of two or more contribu-
tors. Most diffractograms exhibit this peak splitting into at
least two positions. One is close to the (111) diffraction
peak of polycrystalline CO2 at S ~ 1.95 Å–1 that imply
local molecule arrangements similar to those in crystalline
carbon dioxide. The other peak is located at smaller S and
mutual molecule positions and orientations corresponding
to this peak require more detailed modeling.
To analyze the temperature behavior of composites we
average intensities shown in Fig. 5 over the main broad
peak in the S interval 1–2 Å–1 (marked by “ave”) and con-
sider such a signal as a function of temperature (Fig. 6).
We see a distinct decay of this signal at elevated tempera-
tures from its highest value at the deposition temperature to
about three times weaker intensity at T ~ 230 K.
We can distinguish at least two stages in the tempera-
ture dependence shown in Fig. 6. One stretches from the
deposition temperature up to ~ 140 K while the other one
exhibits another decay between 140 and ~ 230 K. It is na-
tural to suppose that inside cells in carbon honeycombs
CO2 molecules can interact with pore walls stronger or
weaker depending on channel configurations and sizes. In
the less dense random honeycomb structure the CO2 absor-
bate cannot be kept at sufficiently high temperatures while
in the denser structures hcA1 and hcZn0 bonds with pore
walls apparently are much stronger.
For fitting the experimental data we use the exponential
decay function 1 0 2( ) exp ( ( ) / )f T a b T T c b T= + − − + for re-
duction of diffracted intensities (I – Isubs in Fig. 6) with tem-
perature T associated with the molecule release from larger
or thinner channels in the first and second stages respec-
tively (a, b1, b2, c and T0 are fitting parameters). In both
stages we observe a slight “linear” growth of intensities
that can be ascribed to relaxation of structures formed in
carbon nanochannels towards to their better arrangements.
Conclusions
Varying the preparation conditions under sublimation
of carbon patches from the thinned graphitic rods heated
by the electric current we have found that at the parameters
corresponding to the faster deposition and therefore to the
denser structure formations honeycomb structures are still
absolutely dominant. In these regimes we could also obtain
the armchair type honeycomb structure (hcA1) with thin-
nest possible for honeycomb channels, which was earlier
not identified.
In this work we analyze the behavior of composites
formed from the carbon honeycomb structure filled with
carbon dioxide at elevated temperatures and have found
that complete desorption of carbon dioxide captured in the
carbon honeycomb matrix does not occur even at the tem-
peratures about three times higher as compared with the
sublimation point of CO2 in a polycrystalline state in our
vacuum conditions.
The desorption observed as a temperature function has
distinct two-stage character that is attributed to differently
bonded CO2 molecules with honeycomb walls depending
on channel configurations and sizes. Apparently in the thin-
ner channels of the densest honeycomb of an armchair type
(hcA1) and in a densest structure of a zigzag type (hcZn0)
CO2 molecules are kept by walls much stronger as com-
pared with their interactions with walls in random struc-
tures of a zigzag type.
Acknowledgements
BK acknowledges support by the French National Re-
search Agency (ANR), grant number ANR-14-CE05–0 0 09
HYSTOR.
________
1. H.W. Kroto, J.R. Heath, S.C. O’Brien, R.F. Curl, and R.E.
Smalley, Nature 318, 162 (1985).
2. S. Iijima, Nature 354, 56 (1991).
3. A. Thess, R. Lee, P. Nikolaev, H. Dai, P. Petit, J. Robert, C.
Xu, Y. Lee, S. Kim, A.G. Rinzler, D. Colbert, G.E. Scuseria,
D. Tománek, J.E. Fischer, and R.E. Smalley, Science 273,
483 (1996).
4. P. Utko, R. Ferone, I.V. Krive, R.I. Shekhter, M. Jonson, M.
Monthioux, L. Noé, and J. Nygård, Nature Commun. 1, 37
(2010).
5. T. Lenosky, X. Gonze, M. Teter, and V. Elser, Nature 355,
333 (1992).
Fig. 6. (Color online) Temperature dependence of the diffraction
intensity access with respect to a signal from a carbon substrate
that exhibits two — stage character of CO2 desorption in a wide
temperature range up to T values about three times higher as
compared with the sublimation point of polycrystalline carbon
dioxide in our vacuum conditions.
Low Temperature Physics/Fizika Nizkikh Temperatur, 2019, v. 45, No. 3 375
https://doi.org/10.1038/318162a0
https://doi.org/10.1038/354056a0
https://doi.org/10.1126/science.273.5274.483
https://doi.org/10.1038/ncomms1034
https://doi.org/10.1038/355333a0
Nina V. Krainyukova, Yuri Bogdanov, and Bogdan Kuchta
6. S.J. Townsend, T.J. Lenosky, D.A. Muller, C.S. Nichols, and
V. Elser, Phys. Rev. Lett. 69, 921 (1992).
7. E. Barborini, P. Piseri, and P. Milani, Appl. Phys. Lett. 81,
3359 (2002).
8. A. Milani, M. Tommasini, V. Russo, A.L. Bassi, A. Lucotti,
F. Cataldo, and C.S. Casari, Beilstein J. Nanotechnol. 6, 480
(2015).
9. K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang,
S.V. Dubonos, I.V. Grigorieva, and A.A. Firsov, Science
306, 666 (2004).
10. F. Ding, Yu Lin, P.O. Krasnov, and B.I. Yakobson, J. Chem.
Phys. 127, 164703 (2007).
11. A.K. Singh, J. Lu, R.S. Aga, and B.I. Yakobson, J. Phys.
Chem. C 115, 2476 (2011).
12. L. Firlej, B. Kuchta, A. Lazarewicz, and P. Pfeifer, Carbon
53, 208 (2013).
13. B. Kuchta, L. Firlej, A. Mohammadhosseini, P. Boulet,
M. Beckner, J. Romanos, and P. Pfeifer, J. Amer. Chem. Soc.
134, 15130 (2012).
14. N.V. Krainyukova and E.N. Zubarev, Phys. Rev. Lett. 116,
055501 (2016).
15. N.V. Krainyukova, Fiz. Nizk. Temp. 35, 385 (2009) [Low
Temp. Phys. 35, 294 (2009)].
16. A.V. Dolbin, V.B. Esel’son, V.G. Gavrilko, V.G. Manzhelii,
N.A. Vinnikov, I.I. Yaskovets, I.Yu. Uvarova, N.A. Tripachko,
and B.A. Danilchenko, Fiz. Nizk. Temp. 39, 790 (2013) [Low
Temp. Phys. 39, 610 (2013)].
17. A.V. Dolbin, V.B. Esel’son, V.G. Gavrilko, V.G. Manzhelii,
N.A. Vinnikov, R.M. Basnukaeva, I.I. Yaskovets, I.Yu. Uvarova,
and B.A. Danilchenko, Fiz. Nizk. Temp. 40, 317 (2014) [Low
Temp. Phys. 40, 246 (2014)].
18. N.V. Krainyukova, J. Low Temp. Phys. 187, 90 (2017).
19. T. Kawai, S. Okada, Y. Miyamoto, and A. Oshiyama, Phys.
Rev. B 72, 035428 (2005).
20. Z. Zhang, A. Kutana, Ya. Yang, N.V. Krainyukova, E. Penev,
and B.I. Yakobson, Carbon 113, 26 (2017).
21. A. Kuc and G. Seifert, Phys. Rev. B 74, 214104 (2006).
22. A. Martínez-Mesa, L. Zhechkov, S.N. Yurchenko, T. Heine,
G. Seifert, and J. Rubayo-Soneira, J. Phys. Chem. C 116,
19543 (2012).
23. Z. Zhu and D. Tománek, Phys.Rev. Lett. 109, 135501 (2012).
24. Z. Zhu, Z.G. Fthenakis, J. Guan, and D. Tománek, Phys.
Rev. Lett. 112, 026803 (2014).
25. N.V. Krainyukova and B.W. van de Waal, Thin Solid Films
459, 169 (2004).
26. B.E. Warren, X-Ray Diffraction, Addison-Wesley, Reading,
MA (1969).
27. V. Kiryukhin, E.P. Bernard, V.V. Khmelenko, R.E. Boltnev,
N.V. Krainyukova, and D.M. Lee, Phys. Rev. Lett. 98,
195506 (2007).
28. N. Krainyukova and B. Kuchta, J. Low Temp. Phys. 187, 148
(2017).
29. R. Etters, E. Flenner, B. Kuchta, L. Firlej, and W. Przydrozny,
J. Low Temp. Phys. 122, 121 (2001).
30. L. Firlej, B. Kuchta, R. Etters, W. Przydrozny, and E. Flenner,
J. Low Temp. Phys. 122, 171 (2001).
___________________________
Абсорбція–десорбція вуглекислого газу
у вуглецевих сотах при підвищених температурах
Н.В. Крайнюкова, Ю.С. Богданов, Б. Кухта
Нещодавно синтезований вуглецевий стільниковий алот-
роп має численні потенційні застосування, зокрема для збері-
гання газів всередині вуглецевих матриць. Таку вуглецеву
форму було експериментально досліджено в її більш щільній
формі, щоб оцінити верхню границю температури, при якій
газ зберігається всередині пористої структури. Поряд з рані-
ше запропонованими випадковими стільниками зиґзаґоподіб-
ного типу виявлено найбільш щільну структуру типу arm-
chair. Механізм поглинання–десорбція діоксиду вуглецю, що
досліджено за допомогою дифракції електронів високої енергії
при низьких температурах, показав двохстадійний характер
десорбції, який спостерігається при підвищенні температури.
Цей ефект пов’язаний з більш слабким або більш сильним
зв’язуванням молекул зі стінками пор в залежності від кон-
кретної конфігурації каналів різного розміру. Виявлено, що
повна десорбція СО2 не відбувається навіть при темпера-
турах приблизно в три рази вищих у порівнянні з точкою
сублімації вуглекислого газу в наших вакуумних умовах.
Ключові слова: дифракція високоенергетичних електронів,
газова абсорбція, вуглецеві стільники.
Абсорбция–десорбция углекислого газа
в углеродных сотах при повышенных температурах
Н.В. Крайнюкова, Ю.С. Богданов, Б. Кухта
Недавно синтезированный углеродный сотовый аллотроп
имеет множество потенциальных применений, в частности
для хранения газов внутри углеродных матриц. Такая угле-
родная форма была экспериментально исследована в ее более
плотной форме, чтобы оценить верхний предел температуры,
при которой газ сохраняется внутри ячеистой структуры.
Наряду с ранее предложенными случайными сотами зигзаго-
образного типа обнаружена самая плотная структура типа
armchair. Механизм поглощение–десорбция диоксида угле-
рода, изучаемый с помощью дифракции электронов высокой
энергии при низких температурах, показал двухстадийный
характер наблюдаемой десорбции при повышении темпера-
туры. Этот эффект связан с более слабым или более сильным
связыванием молекул со стенками пор в зависимости от кон-
кретной конфигурации каналов разного размера. Обнаруже-
но, что полная десорбция СО2 не происходит даже при тем-
пературах примерно в три раза более высоких по сравнению
с точкой сублимации углекислого газа в наших вакуумных
условиях.
Ключевые слова: дифракция высокоэнергетичных электро-
нов, газовая абсорбция, углеродные соты.
376 Low Temperature Physics/Fizika Nizkikh Temperatur, 2019, v. 45, No. 3
https://doi.org/10.1103/PhysRevLett.69.921
https://doi.org/10.1063/1.1516635
https://doi.org/10.3762/bjnano.6.49
https://doi.org/10.1126/science.1102896
https://doi.org/10.1063/1.2790434
https://doi.org/10.1063/1.2790434
https://doi.org/10.1021/jp104889a
https://doi.org/10.1021/jp104889a
https://doi.org/10.1016/j.carbon.2012.10.049
https://doi.org/10.1021/ja306726u
https://doi.org/10.1103/PhysRevLett.116.055501
https://doi.org/10.1063/1.3115812
https://doi.org/10.1063/1.3115812
https://doi.org/10.1063/1.4816119
https://doi.org/10.1063/1.4816119
https://doi.org/10.1063/1.4868528
https://doi.org/10.1063/1.4868528
https://doi.org/10.1007/s10909-016-1727-1
https://doi.org/10.1103/PhysRevB.72.035428
https://doi.org/10.1103/PhysRevB.72.035428
https://doi.org/10.1016/j.carbon.2016.11.020
https://doi.org/10.1103/PhysRevB.74.214104
https://doi.org/10.1021/jp305462w
https://doi.org/10.1103/PhysRevLett.109.135501
https://doi.org/10.1103/PhysRevLett.112.026803
https://doi.org/10.1103/PhysRevLett.112.026803
https://doi.org/10.1016/j.tsf.2003.12.126
https://doi.org/10.1103/PhysRevLett.98.195506
https://doi.org/10.1007/s10909-016-1717-3
https://doi.org/10.1023/A:1004870207840
https://doi.org/10.1023/A:1004867910566
1. Introduction
2. Carbon film preparation
3. Experimental
4. The analysis method
5. The structure of carbon films
6. The absorption–desorption effect
Conclusions
Acknowledgements
|