Percolation transitions in d-wave superconductor–half-metallic ferromagnet nanocomposites

Electrical transport properties of random binary networks composed of high-Tc superconductor Bi₂Sr₂Ca₂Cu₃O₆+x microparticles and half-metallic ferromagnet La₀.₆₇Sr0.₃₃MnO₃ (LSMO) nanoparticles have been investigated. Two resistive percolation transitions (superconductor–metal–semiconductor) have b...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2019
Автори: Krivoruchko, V.N., Tarenkov, V.Y.
Формат: Стаття
Мова:English
Опубліковано: Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна НАН України 2019
Назва видання:Физика низких температур
Теми:
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/176073
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Percolation transitions in d-wave superconductor–half-metallic ferromagnet nanocomposites / V.N. Krivoruchko, V.Y. Tarenkov // Физика низких температур. — 2019. — Т. 45, № 5. — С. 555-56. — Бібліогр.: 37 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-176073
record_format dspace
spelling irk-123456789-1760732021-02-04T01:28:37Z Percolation transitions in d-wave superconductor–half-metallic ferromagnet nanocomposites Krivoruchko, V.N. Tarenkov, V.Y. Надпровідність, зокрема високотемпературна Electrical transport properties of random binary networks composed of high-Tc superconductor Bi₂Sr₂Ca₂Cu₃O₆+x microparticles and half-metallic ferromagnet La₀.₆₇Sr0.₃₃MnO₃ (LSMO) nanoparticles have been investigated. Two resistive percolation transitions (superconductor–metal–semiconductor) have been observed for the nanocomposites with a volume fraction of the LSMO no more than 30%. The nanocomposites basic attributes (transition critical temperatures, current–voltage characteristics, percolation threshold, etc.), most probably, cannot be quantitatively interpreted within the framework of a conventional percolation model. We have explained the observed behavior by a two-level scale interaction in the system caused by (i) a significant geometric disparity between the constituent components and (ii) proximity-induced superconducting state of the half-metallic manganite. Досліджено електричні транспортні властивості хаотичних двокомпонентних структур, складених з мікрочастинок високотемпературного надпровідника Bi₂Sr₂Ca₂Cu₃O₆+x та наночастинок напівметалевого феромагнетика La₀.₆₇Sr0.₃₃MnO₃ (LSMO). Для нанокомпозитів з об’ємним складом LSMO не більше ніж 30% спостерігалися два резистивних перколяційних переходи (надпровідник–метал–напівпровідник). Основні характеристики нанокомпозитів (критичні температури переходів, вольт-амперні характеристики, поріг перколяційних переходів і т.п.), найбільш ймовірно, не можуть бути кількісно описані у рамках стандартної перколяційної моделі. Пояснено поведінку, що спостерігається, двома різними характерними масштабами взаємодії в системі, що обумовлено (i) істотною геометричною різницею її компонент та (іі) наведеним ефектом близькості надпровідним станом напівметалевого манганіту. Исследованы электрические транспортные свойства хаотических двухкомпонентных структур, составленных из микрочастиц высокотемпературного сверхпроводника Bi₂Sr₂Ca₂Cu₃O₆+x и наночастиц полуметаллического ферромагнетика La₀.₆₇Sr0.₃₃MnO₃ (LSMO). Для нанокомпозитов с объемным составом LSMO не более 30% наблюдались два резистивных перколяционные перехода (сверхпроводник–металл–полупроводник). Основные характеристики нанокомпозитов (критические температуры переходов, вольтамперные характеристики, порог перколяционных переходов и т.п.), наиболее вероятно, не могут быть количественно описаны в рамках стандартной перколяционной модели. Наблюдаемое поведение объяснено двумя различными характерными масштабами взаимодействия в системе, что обусловлено (i) существенной геометрической разницей ее компонент и (ii) индуцированным эффектом близости сверхпроводящим состоянием полуметаллического манганита 2019 Article Percolation transitions in d-wave superconductor–half-metallic ferromagnet nanocomposites / V.N. Krivoruchko, V.Y. Tarenkov // Физика низких температур. — 2019. — Т. 45, № 5. — С. 555-56. — Бібліогр.: 37 назв. — англ. 0132-6414 http://dspace.nbuv.gov.ua/handle/123456789/176073 en Физика низких температур Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
topic Надпровідність, зокрема високотемпературна
Надпровідність, зокрема високотемпературна
spellingShingle Надпровідність, зокрема високотемпературна
Надпровідність, зокрема високотемпературна
Krivoruchko, V.N.
Tarenkov, V.Y.
Percolation transitions in d-wave superconductor–half-metallic ferromagnet nanocomposites
Физика низких температур
description Electrical transport properties of random binary networks composed of high-Tc superconductor Bi₂Sr₂Ca₂Cu₃O₆+x microparticles and half-metallic ferromagnet La₀.₆₇Sr0.₃₃MnO₃ (LSMO) nanoparticles have been investigated. Two resistive percolation transitions (superconductor–metal–semiconductor) have been observed for the nanocomposites with a volume fraction of the LSMO no more than 30%. The nanocomposites basic attributes (transition critical temperatures, current–voltage characteristics, percolation threshold, etc.), most probably, cannot be quantitatively interpreted within the framework of a conventional percolation model. We have explained the observed behavior by a two-level scale interaction in the system caused by (i) a significant geometric disparity between the constituent components and (ii) proximity-induced superconducting state of the half-metallic manganite.
format Article
author Krivoruchko, V.N.
Tarenkov, V.Y.
author_facet Krivoruchko, V.N.
Tarenkov, V.Y.
author_sort Krivoruchko, V.N.
title Percolation transitions in d-wave superconductor–half-metallic ferromagnet nanocomposites
title_short Percolation transitions in d-wave superconductor–half-metallic ferromagnet nanocomposites
title_full Percolation transitions in d-wave superconductor–half-metallic ferromagnet nanocomposites
title_fullStr Percolation transitions in d-wave superconductor–half-metallic ferromagnet nanocomposites
title_full_unstemmed Percolation transitions in d-wave superconductor–half-metallic ferromagnet nanocomposites
title_sort percolation transitions in d-wave superconductor–half-metallic ferromagnet nanocomposites
publisher Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна НАН України
publishDate 2019
topic_facet Надпровідність, зокрема високотемпературна
url http://dspace.nbuv.gov.ua/handle/123456789/176073
citation_txt Percolation transitions in d-wave superconductor–half-metallic ferromagnet nanocomposites / V.N. Krivoruchko, V.Y. Tarenkov // Физика низких температур. — 2019. — Т. 45, № 5. — С. 555-56. — Бібліогр.: 37 назв. — англ.
series Физика низких температур
work_keys_str_mv AT krivoruchkovn percolationtransitionsindwavesuperconductorhalfmetallicferromagnetnanocomposites
AT tarenkovvy percolationtransitionsindwavesuperconductorhalfmetallicferromagnetnanocomposites
first_indexed 2025-07-15T13:41:29Z
last_indexed 2025-07-15T13:41:29Z
_version_ 1837720550762348544
fulltext Low Temperature Physics/Fizika Nizkikh Temperatur, 2019, v. 45, No. 5, pp. 555–561 Percolation transitions in d-wave superconductor–half-metallic ferromagnet nanocomposites V.N. Krivoruchko and V.Yu. Tarenkov Donetsk Institute for Physics and Engineering of the NAS of Ukraine, 46 Prospect Nauki, Kyev 03028, Ukraine E-mail: krivoruc@gmail.com Received October 30, 2018, revised December 13, 2018, published online March 26, 2019 Electrical transport properties of random binary networks composed of high-Tc superconductor Bi2Sr2Ca2Cu3O6+x microparticles and half-metallic ferromagnet La0.67Sr0.33MnO3 (LSMO) nanoparticles have been investigated. Two resistive percolation transitions (superconductor–metal–semiconductor) have been observed for the nanocomposites with a volume fraction of the LSMO no more than 30%. The nanocomposites basic attributes (transition critical tem- peratures, current–voltage characteristics, percolation threshold, etc.), most probably, cannot be quantitatively interpret- ed within the framework of a conventional percolation model. We have explained the observed behavior by a two-level scale interaction in the system caused by (i) a significant geometric disparity between the constituent components and (ii) proximity-induced superconducting state of the half-metallic manganite. Keywords: nanocomposite, d-wave superconductor, half-metallic ferromagnet, resistive percolation transition. 1. Introduction A common feature of a random insulator–conductor mixture is a sharp increase in an overall conductivity once a critical volume of the conductive phase is reached. This transition is generally interpreted as formation of a cluster of electrically connected conductor particles which spans the entire sample. This picture implies a power-low behav- ior of the conductivity in the vicinity of the percolation transition [1–3]. However, in the more general cases with a variable coupling strength or few-level scales characteriz- ing different geometrical lengths, the conductivity behavior may be non-universal [4–6]. When indirect interaction between the constituents exists or additional degrees of freedom become available, this leads to a new or non- universal behavior of the composite system. An example is electrical percolation transitions in a system where a super- conductor and a ferromagnetic metal are counterpartners. In this case, percolation effects can be more complicated as far as the electrical coupling between constituent compo- nents can be both direct, geometric contact, and indirect one, via spin-dependent proximity effects. Hybrid half- metallic ferromagnet (hmF)–superconductor (SC) random composite structures can enable new intelligently tailored functionality and have gained attention over the past few years as new functional materials [4,7–10]. A special case is hmF–SC nanocomposites. Here, due to proximity effects, there are many important issues be- yond the conventional percolation theory [1–3]. The point is that for nanoparticles the geometric contacts and electri- cal connectivity of individual particles are often not the same [11,12]. So far, a few works have been reported on investigations of transport properties of a SC with half- metallic magnetic nanoparticles composites. Unconven- tional double percolation transition is identified in Ref. 4 for a binary network composed of nanoparticles of MgB2 and CrO2. Here the double percolation transition (super- conductor–insulator–metal) was especially pronounced at liquid helium temperatures. It is controlled by the compo- nents volume fractions and originates from the suppressed interface conduction and tunneling as well as a large geo- metric disparity between particles [4]. Acharya et al. [9] prepared and studied electrical transport characteristics of Bi2Sr2CaCu2O8/BiFeO3 nanocomposite with various weight percentage of BiFeO3 nanoparticles (BiFeO3 in nanoform is insulating and exhibits superparamagnetism). Measurement of the critical current density reveals that the superconducting transition temperature splits into two, Tc1 and Tc2, along with a broadening of overall superconduct- ing transition. Authors accounted such behavior to the weak-link nature of a granular SC as the latter is composed of superconducting grains embedded in a nonsuper- conducting host. Of the two superconducting transitions temperatures, the higher one, Tc1, marks the superconduc- tivity in grains whereas the grain boundary still remains normal, and the lower one, Tc2, emerges when the grain boundary also becomes superconducting. The appearance of additional transition temperature and its broadening © V.N. Krivoruchko and V.Yu. Tarenkov, 2019 V.N. Krivoruchko and V.Yu. Tarenkov clearly reflects that BiFeO3 goes to the grain boundary region and becomes superconducting only due to the prox- imity effect at lower temperatures [9]. In this paper, we report on the results of experimental investigations of electrical percolation transitions in ran- dom binary nanocomposites, which have been composed of cuprate SC Bi2Sr2Ca2Cu3O6+x (Bi2223) microparticles and hmF La0.67Sr0.33MnO3 (LSMO) nanoparticles. Name- ly, we designed and fabricated a number of random nanocrystalline samples by combining with different vol- ume ratios the hmF and d-wave SC components. This al- lowed us to investigate the percolation effects in electrical transport characteristics of the nanocomposites. An unusu- ally large value of the concentration threshold for Bi2223 is detected for the realization a double percolation transi- tion superconductor–metal–semiconductor. We argue that the observed behavior is due to two different length scales of effective interaction in the system and is specified by: (i) a significant geometric disparity between the constituent particles and (ii) an unconventional (most probably, triplet) superconducting state induced in the nanocomposite by spin-dependent superconducting proximity effect [13]. The structure of the paper is as follows. Section 2 is de- voted to the experimental details. Section 3 is a central one. To obtain a reference data, we start with measurements of the resistance temperature dependences for compacted samples of pure Bi2223 microparticles and LSMO nanoparticles (Sec. 3.1). In Secs. 3.2 and 3.3, the electrical transport characteris- tics of the nanocomposites are presented at above and below the metal–semiconductor transition temperature, respectively. We discuss the experimental results in the context of a two- level percolation process in the hmF:SC random nano- composite, along with a splitting of overall superconducting transition. We finalize with the Conclusion (Sec. 4). 2. Methods of preparation and samples A series of nanocomposite samples have been fabri- cated. The composites are prepared by mixing the cuprate d-wave SC Bi2223 (Bi2Sr2Ca2Cu3O6+x, the superconduct- ing transition temperature in the interval Tc = 100–110 K) and the manganite LSMO (La0.67Sr0.33MnO3, the Curie temperature TC ≈ 360 K of monocrystalline samples) with a different volume content of the components. A specific feature of the composites is that the high-Tc SC is used a powder with a grain size of 5–15 μm, while the manganite LSMO is a nanopowder with a particle size of 20–30 nm. Note that the coherence length of Bi2223 is anisotropic with ξab(0) ≈ 2 nm in the ab plane, which is a typical val- ue for cuprate oxides, and along the c-axis direction ξc(0) is less than 0.02 nm. Hence, the size of the Bi2223 grains was much larger than the superconducting coherence length. Details of the LSMO nanoparticle preparation can be found in Refs. 14, 15. Magnetization measurements, in particular, the nuclear magnetic resonance and the nuclear spin-spin relaxation of 55Mn nuclei of nanopowders and polycrystalline samples of the same composition con- firmed that manganite nanoparticles of such sizes retain their magnetic properties and the double exchange mecha- nism of magnetic interaction (and thus, half-metallic prop- erties) [16,17]. The samples were prepared by using a traditional cold- pressed technique. The raw materials were mixed accord- ing to their volume ratios. A homogeneous composition was achieved by mixing the components in alcohol, fol- lowed by drying and an additional mechanical mixing at temperature above the Curie to avoid magnetic coupling of the manganite nanoparticles. Plates with dimensions 1×0.2×10 mm were then compacted at pressures up to P = = 40–60 kbar from the resulting mixture. Such pressure provides a good electrical connection between the grains and high mechanical strength of the plate. The samples were not subjected to sintering in order to avoid interdiffusion and chemical reaction between the compo- nents. Four contacts for current and potential measure- ments were formed by introducing fine silver paste to the designated contact region on the plate. Samples of different compositions were prepared according to the volume frac- tion, percentagewise, of the components LSMO:Bi2223 = = 0:100, 10:90, 20:80, 25:75, 30:70, 40:60, 50:50, 100:0. Inset in Fig. 1 sketches out the nanocomposite obtained structure. The current–voltage (I–V) characteristics were meas- ured by using a conventional four-terminal technique. Re- sistivity as a function of temperature was measured direct- ly by using an ac voltage bias source with a small output resistance and ~ 400 μV amplitude of the signal on the sample. We measured electrical transport characteristics of the samples and studied the percolation transition depen- dence on the sample’s composition. Fig. 1. Resistivity-vs-temperature dependences for pure compact- ed samples of Bi2223 microparticles and LSMO nanoparticles. Inset: sketch of the nanocomposite structure. 556 Low Temperature Physics/Fizika Nizkikh Temperatur, 2019, v. 45, No. 5 Percolation transitions in d-wave superconductor–half-metallic ferromagnet nanocomposites 3. Results and discussions 3.1. Pure compacted samples The Bi–Sr–Ca–Cu–O system is known to have three types of structures, namely Bi2Sr2Cu2O6+x (Bi2223), Bi2Sr2CaCu2O6+x (Bi2212) and Bi2Sr2Cu2O6+x (Bi2201), which have the critical temperature Tc of about 100, 85 and 20 K, respectively. No more than 15% of residual second- ary phase Bi2212 has been detected in our compacted Bi2223 samples by x-ray diffraction studies. Note, that the residual Bi2212 phase localizes, mainly, at grain bounda- ries of the Bi2223 phase [18]. The temperature behavior of the pure compacted Bi-2223 sample resistivity, R(T), is shown in Fig. 1. As seen in the figure, the superconducting transition of the compacted Bi2223 is in the interval 65–100 K and R(T) dependence contains two decreasing segments which correspond to Bi2223 and Bi2212 transitions to a superconducting state. This points that a granular structure of the sample does not affect a global sample superconductivity. The supercon- ducting state is consolidated at ~ 65 K. Accordingly, the compacted Bi2223 samples contain transparent interfaces and strong links among grains. Above Tc, the sample is a good conductor with low resistivity. The LSMO sample’s zero-field R(T) characteristic is shown in Fig. 1, as well. It demonstrates a metal–semi- conductor transition at Tp ≈ 280 K (for bulk LSMO Tp ≈ ≈ 360 K [19]) and a metallic behavior at low temperature. Figure 2 illustrates the LSMO sample magnetoresistive characteristics. The low-field (H ≈ 1 kOe) magneto- resistive effect [ρ(T,0) – ρ(T,H)]/ρ(T,0) at T = 77 K was about 10%. This suggests that the contribution of inter granular junctions to the total sample resistance is relative- ly small and confirms high quality of the nanoceramic LSMO sample. We find it convenient to describe the LSMO R(T) behavior in terms of the magnetic polaron picture [20]. The main assumption of the theory [20] is that it does not demand the existence of an abrupt metal–insu- lator transition in doped manganites. Instead, the theory predicts the coexistence of two electronic processes: (i) energy-conserving tunneling process and (ii) thermally assisted hopping process. Both processes are temperature dependent and, with increasing temperature, the probability of tunneling process decreases, while the probability of hop- ping process increases. At intermediate temperature, near the R(T) peak, the hopping process overgrows the tunneling one and the sample behaves as an insulator (semiconductor) at higher temperatures. The peak temperature Tp should not coincide with the Curie temperature TC, nevertheless, it correlates with the TC since they both are dependent on the number of thermal magnons. 3.2. Composites’ transport characteristics at T > Tp Let us start the discussion of the composite transport characteristics at temperatures when LSMO behaves as an insulator and we deal with random insulator–conductor mix- tures. Figure 3 shows the dependence of the LSMO:Bi2223 nanocomposite resistivity R(T) on the volume content of LSMO at T = 300 K. A rapid change in the sample’s resis- tivity occurs in the vicinity of about 20 vol.% of LSMO. As we see (left, logarithmic, axis in Fig. 3), as Bi2223 grains are sufficiently decoupled, at fixed temperature the re- sistance is controlled by a tunneling process and is given by R = R0 exp (rij/ζ). (1) Here R0 = R(VLSMO = 0) is a constant (or a weak function of the LSMO volume content), ζ is the characteristic tunnel- ing length, and is rij is the minimal distance between the two Bi2223 particles. As is known (see, e.g., [3]), the electrical conductivity of a composite generated on a mechanical mixture of the components is determined by the structure of the conduc- Fig. 2. Compacted LSMO sample low-field magnetoresistive effect; T = 77 K. Fig. 3. Dependence of the LSMO:Bi2223 nanocomposite resis- tivity R(T) on the volume content of LSMO; R0 = R(VLSMO = 0), T = 300 K. Low Temperature Physics/Fizika Nizkikh Temperatur, 2019, v. 45, No. 5 557 V.N. Krivoruchko and V.Yu. Tarenkov tive percolation cluster arising in the system. If an infinite percolation cluster for a highly conductive phase is broken, transport properties of the composite are determined by a high-resistive ingredient. In our case, the choice of Bi2223 as a matrix is justified by a high conductivity of the com- pacted Bi2223 powder, as well as its well pronounced me- tallic behavior indicating clean grain boundaries of Bi2223. Since electron mean free path in manganite oxides is quite small [19], we can assume that the electron transport is of the diffusive type. Thus, in our case, the high-resistive component is LSMO manganite. We find that the nanocomposites resistance behavior on the LSMO concentration, R(VLSMO) Eq. (1), is compatible with the tunneling-percolation model [5]. According to the ap- proach [5], in the intermediate regime between the percola- tion-like and the hopping-like electronic processes the tun- neling between particles is a continuous function of the interparticle distances. Correspondingly, the resulting tun- neling conductance of a nanocomposite decays exponen- tially with these distances and does not imply any sharp cutoff or threshold. Significant deviation of R(VLSMO) from the conventional percolation theory, which predicts a power-law behavior of the conductance [3], we ascribe to a large geometric dis- parity between the components and a polaron-type con- ductivity of half-metallic manganites. As it follows from Fig. 3, already 30 vol.% of the LSMO nanoparticles coat the Bi2223 grains surface, preventing direct contact be- tween them (see inset in Fig. 1). As a result, the resistance of the composite is determined by the current flowing through the –Bi2223–LSMO–Bi2223-channels. Above Tp this leads to a hopping-like regime in the nanocomposite’s electrical conductivity. Therefore, the metal–semiconductor transition is a continuous function of the nanoparticles con- centration and does not demonstrate a sharp cutoff or a percolation threshold. 3.3. Composites’ transport characteristics at T < Tp The temperature dependences of the nanocomposites resistivity R(T) below Tp are shown in Fig. 4 for 20, 25, 30, 40, and 50 vol.% of LSMO. As seen in the figure, the addi- tion of already 20 vol.% of LSMO significantly broadens the resistive superconducting transition R(T) of the nanocomposite. The resistance of the sample with 40 vol.% of LSMO nanoparticles remains finite in all investigated temperature range, although the onset of the R(T) reduction matches the Tc of Bi2223. Figure 5 illustrates the I–V characteristic of the samples with 20, 25, and 30 vol.% of LSMO taken at 4.2 K. We ob- serve a clear zero-resistance supercurrent branch, with an ex- cess current Iexc of 0.32, 0.27, and 0.12 mA, respectively. The presence of ferromagnetic LSMO nanoparticles causes the formation of weak links at the grain’s boundaries, as well as a local magnetic field of the hmF particles certainly limits the critical current density in the nanocomposite [21]. As it follows from R(T) characteristics, Fig. 4, the su- perconducting transition temperature splits into two, Tc1 and Tc2, along with a broadening of overall superconduct- ing transition. The higher temperature, Tc1, marks the su- perconductivity of Bi2223 grains whereas the grain bound- ary still remains normal. The lower one, Tc2, appears when the grain boundary becomes superconducting as well. One of the possible origins of the second superconducting tran- sition is the presence of the additional phases Bi2212 which has the critical temperature of about 80 K. Another possibility is the unconventional superconducting state (a mixture of singlet and triplet correlations) induced in the nanocomposite. Superconductivity in bulk composite systems was exten- sively studied within the percolation scenario [4,8,9,11,12]. It has been established that when grains of the supercon- ducting material, d, are large enough, d >> ξS, their basic intra-granular characteristics (critical temperature, gap value, etc.) are not affected by the proximity of the non- Fig. 4. (Color online) Temperature dependences of the nanocom- posite’s resistivity with the volume fraction, percentagewise, 20, 25, 30, 40, and 50 vol.% of the LSMO. Fig. 5. (Color online) Current–voltage characteristics for the nanocomposites with 20, 25, and 30 vol.% of LSMO at 4.2 K. 558 Low Temperature Physics/Fizika Nizkikh Temperatur, 2019, v. 45, No. 5 Percolation transitions in d-wave superconductor–half-metallic ferromagnet nanocomposites superconducting component and remain close to the bulk value both above and below the percolation threshold. For a three-dimensional composite with roughly the same geo- metrical size of components, the three-dimensional lattice percolation model predicts fC = 0.16 ± 0.02 for the percola- tion threshold of the volume fraction, f, of a superconduct- ing component (i.e., fC being a percolation threshold of grains with linear dimension ≳ ξS). Thus, for the composite systems under consideration with the large enough grains of the superconducting material, below the percolation threshold the macroscopic transition temperature Tc should not be strongly dependent on the contents variation. How- ever, as it is seen in Fig. 4, even for the sample with vol- ume fraction about f = 0.5, i.e., about three times larger than the conventional percolation model predicts, there is no transition into a superconducting state. Moreover, the transition temperature Tc is strongly reduced even at con- centrations when an infinite percolating cluster of Bi2223 constitutes: see R(T) data in Fig. 4 for the samples with 20, 25, and 30 vol.% of LSMO (80, 75, and 70 vol.% of the superconducting component). Thus, the predictions based on the conventional percolation model do not work for the Bi2223:LSMO nanocomposites, most probably, due to two factors: (i) unconventional proximity effect and (ii) essen- tial difference in geometrical size of the components. As is known, below a superconducting transition an indi- rect (via proximity effect) coupling between constituent components, SC and hmF, enters into a force. From a theo- retical viewpoint [13,22–24], the appearance of a long-range proximity effect can be realized if there is a spatial variation of the magnetization at the ferromagnet surface. In this case, the spin conservation low is not fulfilled and a triplet com- ponent of anomalous correlations should be taken into con- sideration. A characteristic coherence length of triplet corre- lations ξF = (DF/2πT)1/2 can be as large as ~ 100 nm at low temperatures (here DF is the diffusivity of the ferromagnet metal and T is the temperature; we choose h = kB = 1). In previous papers, anomalous superconductivity has been de- tected in nanocomposites MgB2:La0.67Sr0.33MnO3 [25] and MgB2:La0.7Ca0.3MnO3 [10], as well as in half-metallic manganite, (La,Sr)MnO3 and (La,Ca)MnO3, being in con- tact with an s-wave SC, Pb or MgB2 [26–28]. It was argued that at low-temperatures manganites are thermodynamically very close to a superconducting state with a triplet p-wave even frequency pairing. Being proximity coupled to the singlet SC, the m = 0 triplet component in the manganite is coupled via the boundary condition to the singlet pairing amplitude in the SC partner. At the same time, the spin- active boundary leads to coupling of the m = 0 triplet com- ponent with an equal-spin, m = 1, pairing amplitude in manganite. These couplings yield phase coherency of both the m = 0 and equal-spin m = 1 triplet Cooper pairs in the hmF with a large quasiparticle gap [29]. Thus, in the case of the nanocomposite under consid- eration, proximity effect possesses a several specific pe- culiarities. Firstly, because the contacts between Bi2223 grains are through the half-metallic LSMO nanograins, this causes a significant broadening of the nanocompo- sites transition to a superconducting state. The depend- ence of the superconducting properties on the exchange field inhomogeneity is expected to be a general feature of the proximity effect in mesoscopic F–SC structures [13,24]. Secondly, high-Tc superconductors are widely believed to have a dominant d-wave pairing symmetry [30]. As theory predicts and experiment provides eviden- ces (see, e.g., [13,24,31–36]), in proximity coupled d-wave SC/ferromagnet structures an unconventional (spin-triplet) superconducting state can be generated. This also means the appearance of a new geometrical length which charac- terizes unconventional superconducting state (a mixture of d-wave singlet and p-wave triplet Cooper pairs) induced in the nanocomposite. To date, we know of no reports ad- dressing the scenario for anomalous superconductivity of high-Tc d-wave SC–hmF nanocomposites and proximity effects in such type of nanocomposites. 4. Conclusion Unconventional superconducting state induced in a hmF by d-wave SC bears a great fundamental interest and can be useful for future applications in superconducting spintronics (see, e.g., [37] and references therein). Traditional search of materials for superconducting spintronics have mainly fo- cused on multilayers and engineering of interfaces between SC and ferromagnetic materials. The aim is to find the ways to enhance the triplet state critical temperature and to gener- ate a long-ranged spin-triplet state. Yet, in our opinion, there are other ways to produce materials demonstrating long- ranged spin-triplet correlations. A direct coupling of high- temperature superconducting and magnetic orders can be possible through a creation of the spin-triplet Cooper pairs in nanocomposite materials. In summary, we have studied random nanocomposites of a half-metallic ferromagnet and a high-temperature su- perconductor with different volume fractions and a large geometrical disparity: nanoparticles of La0.67Sr0.33MnO3 and microparticles of Bi2Sr2Ca2Cu3O6+x. We have investi- gated transport characteristics of the nanocomposites and, in particular, a superconducting percolation transition aris- ing through contacts between the components. It was found that the classical percolation theory is strongly affected by both a large geometrical disparity between components and by the proximity effect. Double resistive percolation transi- tion (superconductor–metal–semiconductor) has been ob- served for nanocomposites with the volume fraction of LSMO below 30%. The observed behavior is due to two different effective length scales which reflect a two-level scale interaction in the system. One is determined by a geo- metric difference between constituent components, whereas the another arises due to proximity effect. We have argued Low Temperature Physics/Fizika Nizkikh Temperatur, 2019, v. 45, No. 5 559 V.N. Krivoruchko and V.Yu. Tarenkov that the constituent particle geometrical size and indirect interaction via proximity effect play a crucial role in achieving conditions enabling the percolation transitions in the nanocomposites under consideration. The unusual transport properties of this type nanocomposites bear great fundamental interest and make their promise for applica- tions, e.g., as novel functional materials. Acknowledgments The authors are grateful to I. Danilenko and O. Gorban’ for the preparation of manganite nanoparticles, and A.D. Rud’ for x-ray diffraction measurements. We also thank M.A. Belogolovskii for fruitful discussions. The work was supported by the supported by the Science and Technology Center in Ukraine and the National Academy of Sciences of Ukraine (project No: 6250). _______ 1. S. Kikpartrick, Rev. Mod. Phys. 45, 574 (1973). 2. A. Bunde and W. Dieterich, J. Electroceram. 5, 81 (2000). 3. I. Balberg, J. Phys. D: Appl. Phys. 42, 064003 (2009). 4. X. Liu, R. P. Panguluri, Z.-F. Huang, and B. Nadgorny, Phys. Rev. Lett. 104, 035701 (2010). 5. G. Ambrosetti, C. Grimaldi, I. Balberg, T. Maeder, A. Danani, and P. Ryser, Phys. Rev. B 81, 155434 (2010). 6. J. Li, B. Ray, M.A. Alam, and M. Östling, Phys. Rev. E 85, 021109 (2012). 7. Z. Rubin, S.A. Sunshine, M.B. Heaney, I. Bloom, and I. Balberg, Phys. Rev. B 59, 12196 (1999). 8. Y.M. Strelniker, A. Frydman, and S. Havlin, Phys. Rev. B 76, 224528 (2007). 9. S. Acharya, A. K. Biswal, J. Ray, and P. N. Vishwakarma. J. Appl. Phys. 112, 053916 (2012). 10. V.V. Kononenko, V.Yu. Tarenkov, A.I. Dyachenko, and V.N. Varukhin, Fiz. Nizk. Temp. 41, 262 (2015) [Low Temp. Phys. 41, 199 (2015)]. 11. I. Sternfeld, V. Shelukhin, A. Tsukernik, M. Karpovski, A. Gerber, and A. Palevski, Phys. Rev. B 71, 064515 (2005). 12. L. Ruiz-Valdepeñas, M. Vélez, F. Valdés-Bango, L.M. Álvarez-Prado, J.I. Martín, E. Navarro, J.M. Alameda, and J.L. Vicent, New J. Phys. 15, 103025 (2013). 13. M. Eschrig and T. Löfwander, Nature Phys. 4, 138 (2008). 14. M.M. Savosta, V.N. Krivoruchko, I.A. Danielenko, V.Yu. Tarenkov, T.E. Konstantinova, A.V. Borodin, and V.N. Varyukhin, Phys. Rev. B 69, 024413 (2004). 15. V. Krivoruchko, T. Konstantinova, A. Mazur, A. Prokhorov, and V. Varyukhin, J. Magn. Magn. Mater. 300, e122 (2006). 16. A.S. Mazur, V.N. Krivoruchko, and I.A. Danilenko, Fiz. Nizk. Temp. 33, 1227 (2007) [Low Temp. Phys. 33, 931 (2007)]. 17. A.N. Ulyanov, D.S. Yang, A.S. Mazur, V.N. Krivoruchko, G.G. Levchenko, I.A. Danilenko, and T.E. Konstantinova, J. Appl. Phys. 109, 123928 (2011). 18. H. Deng, P. Hua, W. Wang, C. Dong, H. Chen, F. Wu, H. Wang, Y. Zhou, and G. Yuan, Physica C 339, 181 (2000). 19. E. Dagotto, T. Hotta, and A. Moreo, Phys Rep. 344, 1 (2001). 20. S. Zhang. J. Appl. Phys. 79, 4542 (1996). 21. O. Paredes, E. Baca, and O. Morán, J. Supercond. Nov. Magn. 26, 2323 (2013). 22. F.S. Bergeret, A.F. Volkov, and K.B. Efetov, Phys. Rev. Lett. 86, 4096 (2001). 23. A. Kadigrobov, R.I. Shekhter, and M. Jonson, Europhys. Lett. 54, 394 (2001). 24. M. Eschrig, J. Kopu, J.C. Cuevas, and G. Schön, Phys. Rev. Lett. 90, 137003 (2003). 25. V.N. Krivoruchko and V.Yu. Tarenkov. Phys. Rev. B 86, 104502 (2012). 26. V.N. Krivoruchko, V.Yu. Tarenkov, A.I. D’yachenko, and V.N. Varyukhin, Europhys. Lett. 75, 294 (2006). 27. V.N. Krivoruchko and V.Yu. Tarenkov, Phys. Rev. B 75, 214508 (2007). 28. V.N. Krivoruchko and V.Yu. Tarenkov, Phys. Rev. B 78, 054522 (2008). 29. V.N. Krivoruchko, A.I. D’yachenko, and V.Yu. Tarenkov, Fiz. Nizk. Temp. 40, 1147 (2014) [Low Temp. Phys. 40, 895 (2014)]. 30. C.C. Tsuei and J.R. Kirtley, Rev. Mod. Phys. 72, 969 (2000). 31. Z.P. Niu and D.Y. Xing, Phys. Rev. Lett. 98, 057005 (2007). 32. W. Wang, D.F. Shao, R.C. Xiao, W.J. Lu, and H.Y. Wu, J. Supercond. Nov. Magn. 29, 1741 (2016). 33. T. Hu, H. Xiao, C. Visani, Z. Sefrioui, J. Santamaria, and C.C. Almasan, Phys. Rev. B 80, 060506(R) (2009). 34. K. Dybko, K. Werner-Malento, P. Aleshkevych, M. Wojcik, M. Sawicki, and P. Przyslupski, Phys. Rev. B 80, 144504 (2009). 35. Y. Kalcheim, T. Kirzhner, G. Koren, and O. Millo, Phys. Rev. B 83, 064510 (2011). 36. D.K. Satapathy, M.A. Uribe-Laverde, I. Marozau, V.K. Malik, S. Das, Th. Wagner, C. Marcelot, J. Stahn, S. Brück, A. Rühm, S. Macke, T. Tietze, E. Goering, A. Frañó, J.-H. Kim, M. Wu, E. Benckiser, B. Keimer, A. Devishvili, B.P. Toperverg, M. Merz, P. Nagel, S. Schuppler, and C. Bernhard, Phys. Rev. Lett. 108, 197201 (2012). 37. J. Linder and J.W.A. Robinson, Nature Phys. 11, 307 (2015). ___________________________ Перколяційні переходи у нанокомпозитах d-хвильовий надпровідник–феромагнітний напівметал Досліджено електричні транспортні властивості хаотич- них двокомпонентних структур, складених з мікрочастинок високотемпературного надпровідника Bi2Sr2Ca2Cu3O6+x та наночастинок напівметалевого феромагнетика La0,67Sr0,33MnO3 (LSMO). Для нанокомпозитів з об’ємним складом LSMO не більше ніж 30% спостерігалися два резистивних перколяцій- них переходи (надпровідник–метал–напівпровідник). Основ- ні характеристики нанокомпозитів (критичні температури переходів, вольт-амперні характеристики, поріг перколяцій- них переходів і т.п.), найбільш ймовірно, не можуть бути кількісно описані у рамках стандартної перколяційної моде- 560 Low Temperature Physics/Fizika Nizkikh Temperatur, 2019, v. 45, No. 5 https://doi.org/10.1103/RevModPhys.45.574 https://doi.org/10.1023/A:1009997800513 https://doi.org/10.1088/0022-3727/42/6/064003 https://doi.org/10.1103/PhysRevLett.104.035701 https://doi.org/10.1103/PhysRevLett.104.035701 https://doi.org/10.1103/PhysRevB.81.155434 https://doi.org/10.1103/PhysRevE.85.021109 https://doi.org/10.1103/PhysRevB.59.12196 https://doi.org/10.1103/PhysRevB.76.224528 https://doi.org/10.1063/1.4751277 https://doi.org/10.1063/1.4915909 https://doi.org/10.1063/1.4915909 https://doi.org/10.1103/PhysRevB.71.064515 https://doi.org/10.1088/1367-2630/15/10/103025 https://doi.org/10.1103/PhysRevB.69.024413 https://doi.org/10.1016/j.jmmm.2005.10.163 https://doi.org/10.1063/1.2747068 https://doi.org/10.1063/1.3603003 https://doi.org/10.1016/S0921-4534(00)00326-9 https://doi.org/10.1016/S0370-1573(00)00121-6 https://doi.org/10.1063/1.361717 https://doi.org/10.1007/s10948-012-1455-y https://doi.org/10.1007/s10948-012-1455-y https://doi.org/10.1103/PhysRevLett.86.4096 https://doi.org/10.1103/PhysRevLett.86.4096 https://doi.org/10.1209/epl/i2001-00107-2 https://doi.org/10.1209/epl/i2001-00107-2 https://doi.org/10.1103/PhysRevLett.90.137003 https://doi.org/10.1103/PhysRevLett.90.137003 https://doi.org/10.1103/PhysRevB.86.104502 https://doi.org/10.1209/epl/i2006-10115-8 https://doi.org/10.1103/PhysRevB.75.214508 https://doi.org/10.1103/PhysRevB.78.054522 https://doi.org/10.1063/1.4897410 https://doi.org/10.1103/RevModPhys.72.969 https://doi.org/10.1103/PhysRevLett.98.057005 https://doi.org/10.1007/s10948-016-3482-6 https://doi.org/10.1103/PhysRevB.80.144504 https://doi.org/10.1103/PhysRevB.83.064510 https://doi.org/10.1103/PhysRevB.83.064510 https://doi.org/10.1103/PhysRevLett.108.197201 Percolation transitions in d-wave superconductor–half-metallic ferromagnet nanocomposites лі. Пояснено поведінку, що спостерігається, двома різними характерними масштабами взаємодії в системі, що обумов- лено (i) істотною геометричною різницею її компонент та (іі) наведеним ефектом близькості надпровідним станом напів- металевого манганіту. Ключові слова: нанокомпозит, d-хвильовий надпровідник, напі- вметалевий феромагнетик, резистивні перколяційні переходи. Перколяционные переходы в нанокомпозитах d-волновой сверхпроводник–ферромагнитный полуметалл В.Н. Криворучко, В.Ю. Таренков Исследованы электрические транспортные свойства хаотических двухкомпонентных структур, составленных из микрочастиц высокотемпературного сверхпроводника Bi2Sr2Ca2Cu3O6+x и наночастиц полуметаллического фер- ромагнетика La0,67Sr0,33MnO3 (LSMO). Для нанокомпози- тов с объемным составом LSMO не более 30% наблюдались два резистивных перколяционные перехода (сверхпровод- ник–металл–полупроводник). Основные характеристики нано- композитов (критические температуры переходов, вольт- амперные характеристики, порог перколяционных перехо- дов и т.п.), наиболее вероятно, не могут быть количествен- но описаны в рамках стандартной перколяционной модели. Наблюдаемое поведение объяснено двумя различными ха- рактерными масштабами взаимодействия в системе, что обу- словлено (i) существенной геометрической разницей ее ком- понент и (ii) индуцированным эффектом близости сверх- проводящим состоянием полуметаллического манганита. Ключевые слова: нанокомпозит, d-волновой сверхпровод- ник, полуметаллический ферромагнетик, резистивные пер- коляционные переходы. Low Temperature Physics/Fizika Nizkikh Temperatur, 2019, v. 45, No. 5 561 1. Introduction 2. Methods of preparation and samples 3. Results and discussions 3.1. Pure compacted samples 3.2. Composites’ transport characteristics at T > Tp 3.3. Composites’ transport characteristics at T < Tp 4. Conclusion Acknowledgments