Soliton trains in dispersive media

In this paper two Boussinesq-type mathematical models are described which lead to solitonic solutions. One case corresponds to microstructured solids, another case to biomembranes. The emergence of soliton trains in both cases is demonstrated by using numerical simulation. The pseudospectral method...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Datum:2018
Hauptverfasser: Engelbrecht, J., Peets, T., Tamm, K.
Format: Artikel
Sprache:English
Veröffentlicht: Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна НАН України 2018
Schriftenreihe:Физика низких температур
Schlagworte:
Online Zugang:http://dspace.nbuv.gov.ua/handle/123456789/176202
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Soliton trains in dispersive media / J. Engelbrecht, T. Peets, and K. Tamm // Физика низких температур. — 2018. — Т. 44, № 7. — С. 887-892. — Бібліогр.: 34 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Beschreibung
Zusammenfassung:In this paper two Boussinesq-type mathematical models are described which lead to solitonic solutions. One case corresponds to microstructured solids, another case to biomembranes. The emergence of soliton trains in both cases is demonstrated by using numerical simulation. The pseudospectral method guarantees the high accuracy in computing. The significance of the nonlinearities — either deformation-type or displacement-type, is demonstrated.