Dielectric properties of ferromagnetic Ni nanoparticles added (Cu₀.₅Tl₀.₅)Ba₂Ca₂Cu₃O₁₀₋δ superconducting phase

Ferromagnetic nickel (Ni) nanoparticles were added in (Cu₀.₅Tl₀.₅)Ba₂Ca₂Cu₃O₁₀₋δ (CuTl-1223) superconducting matrix to get Nix/CuTl-1223; x = 0–1.00 wt% nanoparticles-superconductor composites. Temperature- and frequency-dependent dielectric properties of CuTl-1223 superconducting phase with differe...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2018
Автори: Mumtaz, M., Asghar, M.A.
Формат: Стаття
Мова:English
Опубліковано: Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна НАН України 2018
Назва видання:Физика низких температур
Теми:
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/176216
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Dielectric properties of ferromagnetic Ni nanoparticles added (Cu₀.₅Tl₀.₅)Ba₂Ca₂Cu₃O₁₀₋δ superconducting phase / M. Mumtaz, M.A. Asghar // Физика низких температур. — 2018. — Т. 44, № 8. — С. 970-977. — Бібліогр.: 20 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-176216
record_format dspace
spelling irk-123456789-1762162021-02-05T01:30:22Z Dielectric properties of ferromagnetic Ni nanoparticles added (Cu₀.₅Tl₀.₅)Ba₂Ca₂Cu₃O₁₀₋δ superconducting phase Mumtaz, M. Asghar, M.A. Свеpхпpоводимость, в том числе высокотемпеpатуpная Ferromagnetic nickel (Ni) nanoparticles were added in (Cu₀.₅Tl₀.₅)Ba₂Ca₂Cu₃O₁₀₋δ (CuTl-1223) superconducting matrix to get Nix/CuTl-1223; x = 0–1.00 wt% nanoparticles-superconductor composites. Temperature- and frequency-dependent dielectric properties of CuTl-1223 superconducting phase with different contents of Ni nanoparticles were studied. Different dielectric parameters such as dielectric constant (ε′r,ε′′r), dielectric tangent loss (tan δ) and ac conductivity (σac) were determined from experimentally measured capacitance and conductance at different frequencies from 10 kHz to 10 MHz and at different operating temperatures from 78 to 290 K. The values of ε′r and ε′′r were found maximal at smaller frequencies and started to decrease at higher frequencies. The value of σac is high at high frequency unlike to ε′r and ε′′r, which is due to release of space charges at high frequencies. Peaks in tan δ graphs represent the resonance phenomenon at certain frequencies in these samples. Non-monotonic behavior in variation of dielectric parameters with temperature of Nix/CuTl-1223 samples was observed particularly at high temperatures which was due to thermal instability of the system at high temperatures. Для отримання композитів наночастинка– надпровідник Nix /CuTl-1223 (x = 0–1,00 мас.%) в надпровідну матрицю (Cu₀.₅Tl₀.₅)Ba₂Ca₂Cu₃O₁₀₋δ (CuTl-1223) було додано феромагнітні наночастинки Ni. Вивчено температурно- та частотно-залежні діелектричні властивості надпровідної фази CuTl1223 з різним вмістом наночастинок Ni. Різні діелектричні параметри, такі як діелектрична стала ( r ε′ , r ε′′ ), діелектричні тангенціальні втрати (tg δ) та провідність змінного струму (σac), визначалися по експериментально виміряних ємності та провідності на різних частотах від 10 кГц до 10 МГц при різних робочих температурах від 78 до 290 К. Значення r ε′ та r ε′′ були максимальні при менших частотах та зменшувалися при більш високих частотах. Значення σac, на відміну від r ε′ та r ε′′ , було високе на високій частоті, що пов’язано з виходом об’ємних зарядів на високих частотах. Піки на tg δ графіках представляють собою резонанс на деяких частотах в цих зразках. Немонотонна поведінка температурних залежностей діелектричних параметрів зразків Nix/CuTl-1223 спостерігалася, зокрема, при високих температурах, що викликано тепловою нестійкістю системи. 2018 Article Dielectric properties of ferromagnetic Ni nanoparticles added (Cu₀.₅Tl₀.₅)Ba₂Ca₂Cu₃O₁₀₋δ superconducting phase / M. Mumtaz, M.A. Asghar // Физика низких температур. — 2018. — Т. 44, № 8. — С. 970-977. — Бібліогр.: 20 назв. — англ. 0132-6414 PACS: 74.25.–q, 74.25. F–, 74.72.–h, 74.81.Bd http://dspace.nbuv.gov.ua/handle/123456789/176216 en Физика низких температур Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
topic Свеpхпpоводимость, в том числе высокотемпеpатуpная
Свеpхпpоводимость, в том числе высокотемпеpатуpная
spellingShingle Свеpхпpоводимость, в том числе высокотемпеpатуpная
Свеpхпpоводимость, в том числе высокотемпеpатуpная
Mumtaz, M.
Asghar, M.A.
Dielectric properties of ferromagnetic Ni nanoparticles added (Cu₀.₅Tl₀.₅)Ba₂Ca₂Cu₃O₁₀₋δ superconducting phase
Физика низких температур
description Ferromagnetic nickel (Ni) nanoparticles were added in (Cu₀.₅Tl₀.₅)Ba₂Ca₂Cu₃O₁₀₋δ (CuTl-1223) superconducting matrix to get Nix/CuTl-1223; x = 0–1.00 wt% nanoparticles-superconductor composites. Temperature- and frequency-dependent dielectric properties of CuTl-1223 superconducting phase with different contents of Ni nanoparticles were studied. Different dielectric parameters such as dielectric constant (ε′r,ε′′r), dielectric tangent loss (tan δ) and ac conductivity (σac) were determined from experimentally measured capacitance and conductance at different frequencies from 10 kHz to 10 MHz and at different operating temperatures from 78 to 290 K. The values of ε′r and ε′′r were found maximal at smaller frequencies and started to decrease at higher frequencies. The value of σac is high at high frequency unlike to ε′r and ε′′r, which is due to release of space charges at high frequencies. Peaks in tan δ graphs represent the resonance phenomenon at certain frequencies in these samples. Non-monotonic behavior in variation of dielectric parameters with temperature of Nix/CuTl-1223 samples was observed particularly at high temperatures which was due to thermal instability of the system at high temperatures.
format Article
author Mumtaz, M.
Asghar, M.A.
author_facet Mumtaz, M.
Asghar, M.A.
author_sort Mumtaz, M.
title Dielectric properties of ferromagnetic Ni nanoparticles added (Cu₀.₅Tl₀.₅)Ba₂Ca₂Cu₃O₁₀₋δ superconducting phase
title_short Dielectric properties of ferromagnetic Ni nanoparticles added (Cu₀.₅Tl₀.₅)Ba₂Ca₂Cu₃O₁₀₋δ superconducting phase
title_full Dielectric properties of ferromagnetic Ni nanoparticles added (Cu₀.₅Tl₀.₅)Ba₂Ca₂Cu₃O₁₀₋δ superconducting phase
title_fullStr Dielectric properties of ferromagnetic Ni nanoparticles added (Cu₀.₅Tl₀.₅)Ba₂Ca₂Cu₃O₁₀₋δ superconducting phase
title_full_unstemmed Dielectric properties of ferromagnetic Ni nanoparticles added (Cu₀.₅Tl₀.₅)Ba₂Ca₂Cu₃O₁₀₋δ superconducting phase
title_sort dielectric properties of ferromagnetic ni nanoparticles added (cu₀.₅tl₀.₅)ba₂ca₂cu₃o₁₀₋δ superconducting phase
publisher Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна НАН України
publishDate 2018
topic_facet Свеpхпpоводимость, в том числе высокотемпеpатуpная
url http://dspace.nbuv.gov.ua/handle/123456789/176216
citation_txt Dielectric properties of ferromagnetic Ni nanoparticles added (Cu₀.₅Tl₀.₅)Ba₂Ca₂Cu₃O₁₀₋δ superconducting phase / M. Mumtaz, M.A. Asghar // Физика низких температур. — 2018. — Т. 44, № 8. — С. 970-977. — Бібліогр.: 20 назв. — англ.
series Физика низких температур
work_keys_str_mv AT mumtazm dielectricpropertiesofferromagneticninanoparticlesaddedcu05tl05ba2ca2cu3o10dsuperconductingphase
AT asgharma dielectricpropertiesofferromagneticninanoparticlesaddedcu05tl05ba2ca2cu3o10dsuperconductingphase
first_indexed 2025-07-15T13:53:58Z
last_indexed 2025-07-15T13:53:58Z
_version_ 1837721336294670336
fulltext Low Temperature Physics/Fizika Nizkikh Temperatur, 2018, v. 44, No. 8, pp. 970–976 Dielectric properties of ferromagnetic Ni nanoparticles added (Cu0.5Tl0.5)Ba2Ca2Cu3O10−δ superconducting phase M. Mumtaz and Mian A. Asghar Materials Research Laboratory, Department of Physics, Faculty of Basic and Applied Sciences (FBAS) International Islamic University (IIU), Islamabad 44000, Pakistan E-mail: mmumtaz75@yahoo.com Received November 30, 2017, revised February 15, 2018, published online June 27, 2018 Ferromagnetic nickel (Ni) nanoparticles were added in (Cu0.5Tl0.5)Ba2Ca2Cu3O10−δ (CuTl-1223) supercon- ducting matrix to get Nix/CuTl-1223; x = 0–1.00 wt% nanoparticles-superconductor composites. Temperature- and frequency-dependent dielectric properties of CuTl-1223 superconducting phase with different contents of Ni nanoparticles were studied. Different dielectric parameters such as dielectric constant ( r′ε , r′′ε ), dielectric tangent loss (tan δ) and ac conductivity (σac) were determined from experimentally measured capacitance and conduct- ance at different frequencies from 10 kHz to 10 MHz and at different operating temperatures from 78 to 290 K. The values of r′ε and r′′ε were found maximal at smaller frequencies and started to decrease at higher fre- quencies. The value of σac is high at high frequency unlike to r′ε and r′′ε , which is due to release of space charges at high frequencies. Peaks in tan δ graphs represent the resonance phenomenon at certain frequen- cies in these samples. Non-monotonic behavior in variation of dielectric parameters with temperature of Nix/CuTl-1223 samples was observed particularly at high temperatures which was due to thermal instability of the system at high temperatures. PACS: 74.25.–q Properties of superconductors; 74.25. F– Transport properties; 74.72.–h Cuprate superconductors; 74.81.Bd Granular, melt-textured, amorphous, and composite superconductors. Keywords: Nix/(CuTl-1223) composites, Ni nanoparticles, CuTl-1223 superconductor, dielectric properties. 1. Introduction The dielectric properties of superconducting materials can play a vital role in growth of microelectronics to produce various robust devices such as memory devices and capaci- tor [1]. High values of dielectric constant of various high- temperature superconductors (HTSCs) made them highly suitable for practical applications in the field of electronics [2–5]. Different phases of Cu0.5Tl0.5Ba2Can–1CunO2n+4–δ HTSCs family can be synthesized at high pressure (~5 GPa) as well as at ambient pressure. The values of supercon- ducting parameters of the materials synthesized at high- pressure are normally higher than those synthesized at am- bient pressure [6]. The high pressure synthesis can play an important role for carriers’ optimization and to enhance superconductivity [7,8]. The easy ambient pressure synthe- sis was the main motivation to select CuTl-1223 phase of CuTl-12(n–1)n HTSCs family for the study of dielectric properties of this phase [9,10]. In various electronic devic- es the conduction mechanisms strongly depends upon the frequency, temperature, surface charges, fabrication condi- tions, impurities and doping concentration. Therefore, it has become mandatory to study the dielectric properties of HTSCs over an extensive frequency and temperature rang- es, which can yield useful information about their polariza- tion and conduction mechanism. There are four primary mechanisms of polarizations: (i) electronic polarization (αe), (ii) atomic and ionic polarization (αa), (iii) dipolar and oriental polarization (αo) and (iv) interfacial polariza- tion (αi) [11,12]. A short-range motion of charges in each mechanism of polarization leads to the total polarization. Interfacial polarization and oriental or dipolar polarization is generally active in HTSCs because at high frequency the dielectric constant becomes saturated for a temperature range from superconducting state to room temperature. There are various techniques reported in literature to tune the dielectric properties of HTSCs but one of the easi- est and very effective methods is the insertion of different © M. Mumtaz and Mian A. Asghar, 2018 Dielectric properties of ferromagnetic Ni nanoparticles added (Cu0.5Tl0.5)Ba2Ca2Cu3O10−δ superconducting phase nanostructures in appropriate amount at the grain bounda- ries of HTSCs matrices. Carrier density can be controlled in the material by varying the content of nanostructures at inter-granular sites. The nature of grain boundaries, oxygen contents, grains size and inter-grains connectivity of bulk HTSCs can also be influenced by the inclusion of nanostructures [13,14]. In present article, the effects of ferromagnetic Ni nano- particles on the dielectric properties of CuTl-1223 super- conducting phase have been explored at different tempera- tures from 78 to 290 K and different frequencies from 10 kHz to 10 MHz. These nanoparticles can modify the nature of grain boundaries, grain size, inter-grain weak- links and oxygen contents, which can affect the supercon- ducting and dielectric parameters of CuTl-1223 phase.We tried to tune the dielectric properties of CuTl-1223 phase by varying the content of ferromagnetic Ni nanoparticles, temperature and frequency. 2. Samples synthesis and experimental details Cu0.5Tl0.5Ba2Ca2Cu3O10–δ (CuTl-1223) superconduct- ing phase was synthesized by solid-state reaction and nickel nanoparticles were prepared by sol-gel methods. These ferromagnetic Ni nanoparticles were added in CuTl- 1223 matrix to get Nix/CuTl-1223; x = 0, 0.25, 0.5, 0.75 and 1.00 wt% superconductor-nanoparticles composites. These samples were characterized by using different exper- imental techniques such as x-rays diffraction (XRD), resis- tivity vs temperature measurements, scanning electron mi- croscopy (SEM) and energy dispersive x-ray spectroscopy (EDX) [15]. The instrument used to measure the inductance (L), ca- pacitance (C) and resistance (R) is commonly written as LCR meter. The frequency dependent dielectric measure- ments were carried out by LCR meter (Hewlett-Packard 4294A) in frequency range from 10 kHz to 10 MHz at dif- ferent operating temperatures from 78 to 290 K. A conven- tional two-probe technique was used for these dielectric measurements. Silver paint was applied on both surfaces of rectangular bar-shaped sample and copper leads contacts were made by silver paint on two silver electrode surfaces of the sample. 3. Results and discussions Structural, compositional, morphological and supercon- ducting transport properties of Nix/CuTl-1223 composites samples were carried out by XRD, EDX, SEM and four- point probe resistivity vs temperature measurements and reported in our previously published manuscript [15]. In this articles, we are reporting only the frequency- and temperature-dependent dielectric properties of Nix/CuTl-1223; x = 0, 0.25, 0.5, 0.75 and 1.00 wt% super- conductor-nanoparticles composites in frequency range from 10 kHz to 10 MHz at different operating tempera- tures from 78 to 290 K. The change in the values of r′ε and r′′ε , tan δ and σac by varying the contents of Ni nanoparti- cles from x = 0 to 1.00 wt%, were determined, compared and explained. The energy stored in the sample when ex- posed to external applied ac field is represented by real part of the dielectric constant (i.e., r′ε = Cd/A 0ε ). Where C is capacitance (F), d is the thickness of the dielec- tric/separation between the plates of the capacitor (m), 0ε is the permittivity of free space ( 0ε = 8.85⋅10–12 F/m) and A is the area of the electrode (m2). Variation in r′ε of Nix/CuTl-1223 composites with different test frequencies and operating temperatures is shown in Figs. 1(a)–(e). The value of r′ε is higher at lower frequencies demonstrating the gradual decrease with the increase in frequency and becomes almost zero at higher frequency indicating that the time period of applied ac signal becomes smaller than the time required for polarization. Active grain boundaries are responsible for high values of real part of dielectric constant at lower frequencies [16–18]. As space charge carriers need finite time for alignment in the direction of applied ac electric field, so r′ε showed decreasing trend with increasing frequency of external applied ac field. Maximum values of r′ε at lower frequency of 10 kHz var- ied from 3.4⋅105 to 3.6⋅103, 1.07⋅104 to 2.28⋅103, 2.5⋅105 to 4.25⋅104, 7.76⋅104 to 1.3⋅104 and 6.3⋅105 to 1.8⋅104 at various operating temperature from 78 to 290 K for Nix/CuTl-1223 composites with x = 0, 0.25, 0.50, 0.75 and 1.00 wt%, respectively. Overall decreasing trend in r′ε with addi- tion of Ni nanoparticles was observed with some non- monotonic behavior at different operating temperatures. Particularly, at higher temperatures the system was be- come thermally unstable due to which a slight anoma- lous behavior in variation of r′ε with T was observed. Comparison of variation in maximum values of r′ε with different contents of Ni nanoparticles at different ope- rating temperature is shown in Fig. 1(f). The suppression in the values of r′ε was observed up to x = 0.75 wt% and an increase was observed in the sample with maximum Ni nanoparticles, i.e., x = 1.00 wt%. The high values of r′ε for the sample with x = 1.0 wt% of Ni nanoparticles can be caused by maximum trapping of mobile charge carriers at grain boundaries due to magnetic interaction with these magnetic Ni nanoparticles present there. The loss or attenuation of energy across the interfac- es of the samples in an external applied electric ac field can be estimated by the imaginary part of the dielectric constant ( r′′ε = Gd/(ωA 0ε )). Where G is conductance and ω (= 2πf) is the angular frequency. Conductance is an expression of the ease with which electric current flows through any material and is the reciprocal of resistance R. The standard unit of conductance is Siemens (S). The variation of r′′ε with test frequency from 10 kHz to 10 MHz at different operating temperatures from 78 to 290 K of Nix/CuTl-1223 composites samples are shown in Fig. 2(a)–(e). A decreasing trend in r′′ε has been ob- Low Temperature Physics/Fizika Nizkikh Temperatur, 2018, v. 44, No. 8 971 https://en.wikipedia.org/wiki/Antiferromagnetic https://en.wikipedia.org/wiki/Inductance https://en.wikipedia.org/wiki/Capacitance https://en.wikipedia.org/wiki/Capacitance https://en.wikipedia.org/wiki/Electrical_resistance M. Mumtaz and Mian A. Asghar served with increasing frequency, which is in accordance with Wagner and Koop’s theory [19,20]. According to these models, dielectric medium is a combination of well conducting grains and poorly conducting grain boundaries. The grain boundaries are responsible for high value of r′′ε at lower frequencies. The maximum value of r′′ε at lower frequency of 10 kHz varied from 4.79⋅106 to 1.1⋅106, 9.9⋅105 to 6.3⋅105, 5.6⋅106 to 4.99⋅105, 5.78⋅106 to 2.9⋅106 and 1.05⋅107 to 5.5⋅106 at different operating temperatures from 78 to 290 K for Nix/CuTl-1223 composites with x = 0, 0.25, 0.50, 0.75 and 1.00 wt%, respectively. At low- er frequencies, the value of r′′ε was found to be highest, which was gradually decreased with the increase of fre- quency and became linear with very lower values at higher frequencies. This was because at lower frequency the carri- ers can follow the frequency of external applied ac field and at high frequency the time period become very short and most of the carriers can’t follow the external electric frequency and the response of the material becomes very small. Variation in maximum value of r′′ε at lower frequen- cy of 10 kHz versus operating temperatures is shown in Fig. 2(f). Maximum values of r′′ε initially decreases with the addition of Ni nanoparticles at all operating tempera- tures and then starts to increase with higher content of the- se nanoparticles contents. Increase in maximum value of r′′ε at x = 0.75 and 1.00 wt% showed enhanced energy loss due to high potential barrier offered by ferromagnetic Ni nano- particles present at grain boundaries. The mobile charge carriers can be trapped across grain boundaries due mag- netic interaction of Ni nanoparticles and large energy loss can take place at higher contents of Ni nanoparticles in CuTl-1223 matrix. Fig. 1. Variation in r′ε as a function of frequency at different operating temperatures of Nix/CuTl-1223 composites with (a) x = 0; (b) x = 0.25 wt%; (c) x = 0.50 wt%; (d) x = 0.75 wt%; (e) x = 1.00 wt% and (f) variation of maximum r′ε at 10 kHz with operating temperature. 972 Low Temperature Physics/Fizika Nizkikh Temperatur, 2018, v. 44, No. 8 Dielectric properties of ferromagnetic Ni nanoparticles added (Cu0.5Tl0.5)Ba2Ca2Cu3O10−δ superconducting phase Dielectric tangent loss ( )tan /r r′′ ′δ = ε ε is the ratio of energy dissipated to energy stored in material when ex- posed to ac field. Variation of tanδ with frequency from 10 kHz to 10 MHz at different operating temperatures from 78 to 290 K of Nix/CuTl-1223 composites is shown in Figs. 3(a)–(e). Value of tanδ is very small and almost constant at low frequency and a peak is observed for all these samples in frequency range from 105 to 107 Hz, which was due to resonance phenomenon resulting from the superposition of hooping frequency of charge carriers with frequency of external applied electric ac field. Varia- tion in tanδ at 10 kHz with operating temperature of these samples is shown in Fig. 3(f). Maximum values of tanδ were observed at higher operating temperatures for all the- se samples. Overall increase in tanδ showed the enhanced potential barriers at grain boundaries with the addition of ferromagnetic Ni nanoparticles in CuTl-1223 supercon- ducting host matrix. At high temperature the system may become unstable due to which a slight anomalous behavior has been witnessed. Variation in ac conductivity (σac) with frequency from 10 kHz to 10 MHz at different operating temperatures from 78 to 290 K of Nix/CuTl-1223 composites is shown in Figs. 4(a)–(e). Prominent increase in σac was observed at higher frequencies, which was attributed to strong conduc- tion mechanism by hooping of charge carriers. Maximum value of σac (s/m) varied from 4.75⋅10–3 to 6.17⋅10–7, 1.7⋅10–4 to 1.27⋅10–5, 2.08⋅10–3 to 4.2⋅10–6, 5.8⋅10–4 to 3.7⋅10–6 and 1.3⋅10–2 to 9.3⋅10–6 at maximum frequency of 10 MHz with different operating temperatures from 78 to 290 K for Nix/CuTl-1223 composites with x = 0, 0.25, 0.50, 0.75 and 1.00 wt%, respectively. Variation of maxi- Fig. 2. Variation in r′′ε as a function of frequency at different operating temperatures of Nix/CuTl-1223 composites with (a) x = 0; (b) x = 0.25 wt%; (c) x = 0.50 wt%; (d) x = 0.75 wt%; (e) x = 1.00 wt% and (f) variation of maximum r′′ε 10 kHz with operating temperature. Low Temperature Physics/Fizika Nizkikh Temperatur, 2018, v. 44, No. 8 973 M. Mumtaz and Mian A. Asghar mum σac as a function of operating temperatures is shown in Fig. 4(f). Increase in maximum value of σac was ob- served at higher operating temperatures, which shows en- hanced conduction mechanism due to thermal excitation. Overall suppression in σac was observed at higher contents of ferromagnetic Ni nanoparticles in CuTl-1223 supercon- ducting matrix for all operating temperatures, which showed the enhanced resistance in the transportation of car- riers due to increased barriers across the grain boundaries with these ferromagnetic Ni nanoparticles. Maximum value σac has initially been increased for x = 0.25 and 0.75 wt% and then started to decrease at higher contents due to en- hanced trapping mechanism promoted by the strong inter- action of magnetic Ni nanoparticles settled at grain bound- aries of the host CuTl-1223 matrix. The slight anomalous trend in variation of σac at higher temperature can be at- tributed to thermal instability of the system. 4. Conclusion Nix/CuTl-1223 nanoparticles-superconductor compo- sites were synthesized and their dielectric properties were explored at different operating temperatures and frequen- cies. The values of r′ε and r′′ε were decreased with addi- tion of Ni nanoparticles at low concentration and en- hancement was observed at high concentrations. The values of tanδ were increased with inclusion of Ni nano- particles in CuTl-1223 superconductor. Occurring of reso- nance phenomenon was evidenced from the peaks in tanδ graphs at certain frequencies in all Nix/CuTl-1223 samples resulting from the superposition of hooping frequency of charge carriers with frequency of external applied electric ac field. Higher content of Ni nanoparticles at grain boundaries created higher barriers to the mobility of charge carriers, which reduced the ac conduction and enhanced Fig. 3. Variation in tanδ as a function of frequency at different operating temperatures of Nix/CuTl-1223 composites with (a) x = 0; (b) x = 0.25 wt%; (c) x = 0.50 wt%; (d) x = 0.75 wt%; (e) x = 1.00 wt% and (f) variation of tanδ at 10 kHz with operating temperature. 974 Low Temperature Physics/Fizika Nizkikh Temperatur, 2018, v. 44, No. 8 Dielectric properties of ferromagnetic Ni nanoparticles added (Cu0.5Tl0.5)Ba2Ca2Cu3O10−δ superconducting phase loss factors in the materials. The variation in dielectric properties can be attributed to the enhanced accumula- tion of charge carriers across the grain boundaries of CuTl-1223 superconducting phase due to magnetic inter- action of ferromagnetic Ni nanoparticles present there. The most probable reason for suppression of σac at high content of Ni nanoparticles is the reduction of optimum carriers’ density desired for high conductivity after addition of these magnetic Ni nanoparticles settled at grain boundaries. So, we can tune the dielectric properties of CuTl-1223 superconductor by homogeneous distribution of nano- structures at grain bombardiers, varying test frequency and operating temperature according to the requirement of applications. ________ 1. X. Xu, Z. Jiao, M. Fu, L. Feng, K. Xu, R. Zuo, and X. Chen, Physica C 417, 166 (2005). 2. S. Cavdar, H. Koralay, N. Tugluoglu, and A. Gunen, Supercond. Sci. Technol. 18, 1204 (2005). 3. R.K. Nkum, M.O. Gyekye, and F. Boakye, Solid State Commun. 122, 569 (2002). 4. J. Konopka, R. Jose, and M. Wołcyrz, Physica C 435, 53 (2006). 5. N. Mohammed, J. Supercond. Novel Magn. 25, 45 (2012). 6. H. Ihara, K. Tanaka, Y. Tanaka, A. Iyo, N. Terada, M. Tokumoto, M. Ariyama, I. Hase, A. Sundaresan, and N. Hamada, Physica C 341, 487 (2000). 7. C. Jin, High Pressure Res. 24, 399 (2004). 8. G. Samara, J. Appl. Phys. 68, 4214 (1990). Fig. 4. Variation in σac as a function of frequency at different operating temperatures of Nix/CuTl-1223 composites with (a) x = 0; (b) x = 0.25 wt%; (c) x = 0.50 wt%; (d) x = 0.75 wt%; (e) x = 1.00 wt% and (f) variation of maximum σac at 10 MHz with operat- ing temperature. Low Temperature Physics/Fizika Nizkikh Temperatur, 2018, v. 44, No. 8 975 https://doi.org/10.1016/j.physc.2004.11.001 https://doi.org/10.1088/0953-2048/18/9/010 https://doi.org/10.1016/S0038-1098(02)00159-X https://doi.org/10.1016/S0038-1098(02)00159-X https://doi.org/10.1016/j.physc.2006.01.017 https://doi.org/10.1007/s10948-011-1207-4 https://doi.org/10.1016/S0921-4534(00)00555-4 https://doi.org/10.1080/08957950412331331691 https://doi.org/10.1063/1.346211 M. Mumtaz and Mian A. Asghar 9. H. Yamamoto, K. Tanaka, K. Tokiwa, H. Hirabayashi, M. Tokumoto, N.A. Khan, and H. Ihara, Physica C 302, 137 (1998). 10. H. Ihara, Physica C 364, 289 (2001). 11. S. Çavdar, H. Koralay, and S. Altındal, J. Low Temp. Phys. 164, 102 (2011). 12. X. Xu, Z. Jiao, M. Fu, L. Feng, K. Xu, R. Zuo, and X. Chen, Physica C 417, 166 (2005). 13. Nawazish A. Khan, M. Mumtaz, and A.A. Khurram, J. Appl. Phys. 104, 033916 (2008). 14. P.B. Ishai, E. Sader, Y. Feldman, I. Felner, and M. Weger, J. Supercond. 18, 455 (2005). 15. Irfan Qasim, M. Waqee-ur-Rehman, M. Mumtaz, Ghulam Hussain, K. Nadeem, and Khurram Shehzad, J. Magn. Magn. Mater. 403, 60 (2016). 16. P. Lunkenheimer, V. Bobnar, A.V. Pronin, A.I. Ritus, A.A. Volkov, and A. Loidl, Phys. Rev. B 66, 052105 (2002). 17. P. Lunkenheimer, R. Fichtl, S.G. Ebbinghaus, and A. Loidl, Phys. Rev. B 70, 172102 (2004). 18. S. Krohns, P. Lunkenheimer, S.G. Ebbinghaus, and A. Loidl, Appl. Phys. Lett. 91, 022910 (2006). 19. K.W. Wagner, Ann. Phys. 345, 817 (1913). 20. C.G. Koops, Phys. Rev. 83, 121 (1951). ___________________________ Вплив додання феромагнітних наночастинок Ni на діелектричні властивості надпровідної фази (Cu0,5Tl0,5)Ba2Ca2Cu3O10–δ M. Mumtaz and Mian A. Asghar Для отримання композитів наночастинка– надпровідник Nix /CuTl-1223 (x = 0–1,00 мас.%) в надпровідну матрицю (Cu0,5Tl0,5)Ba2Ca2Cu3O10–δ (CuTl-1223) було додано феромагнітні наночастин- ки Ni. Вивчено температурно- та частотно-залежні діелектричні властивості надпровідної фази CuTl- 1223 з різним вмістом наночастинок Ni. Різні діеле- ктричні параметри, такі як діелектрична стала ( r′ε , r′′ε ), діелектричні тангенціальні втрати (tg δ) та про- відність змінного струму (σac), визначалися по екс- периментально виміряних ємності та провідності на різних частотах від 10 кГц до 10 МГц при різних робочих температурах від 78 до 290 К. Значення r′ε та r′′ε були максимальні при менших частотах та зменшувалися при більш високих частотах. Значен- ня σac, на відміну від r′ε та r′′ε , було високе на висо- кій частоті, що пов’язано з виходом об’ємних заря- дів на високих частотах. Піки на tg δ графіках представляють собою резонанс на деяких частотах в цих зразках. Немонотонна поведінка температурних залежностей діелектричних параметрів зразків Nix/CuTl-1223 спостерігалася, зокрема, при високих температурах, що викликано тепловою нестійкістю системи. Ключові слова: Nix /(CuTl-1223), наночастинки Ni, надпровідник CuTl-1223, діелектричні властивості. 976 Low Temperature Physics/Fizika Nizkikh Temperatur, 2018, v. 44, No. 8 https://doi.org/10.1016/S0921-4534(98)00192-0 https://doi.org/10.1016/S0921-4534(01)00774-2 https://doi.org/10.1007/s10909-011-0361-1 https://doi.org/10.1016/j.physc.2004.11.001 https://doi.org/10.1063/1.2967823 https://doi.org/10.1063/1.2967823 https://doi.org/10.1007/s10948-005-0024-z https://doi.org/10.1016/j.jmmm.2015.11.066 https://doi.org/10.1016/j.jmmm.2015.11.066 https://doi.org/10.1103/PhysRevB.66.052105 https://doi.org/10.1103/PhysRevB.70.172102 https://doi.org/10.1063/1.2757098 https://doi.org/10.1002/andp.19133450502 https://doi.org/10.1103/PhysRev.83.121 1. Introduction 2. Samples synthesis and experimental details 3. Results and discussions 4. Conclusion