Existence, uniqueness, and asymptotic stability for a thermoelastic plate

In this note we are concerned with the linear theory of a thermoelastic plate when a rate-type equation is assumed for the heat flux. We consider an initial boundary-value problem for this plate and show the existence, uniqueness, and asymptotic stability of the solution. Thermodynamic restriction...

Full description

Saved in:
Bibliographic Details
Date:2003
Main Author: Amendola, G.
Format: Article
Language:English
Published: Інститут математики НАН України 2003
Series:Нелінійні коливання
Online Access:http://dspace.nbuv.gov.ua/handle/123456789/176929
Tags: Add Tag
No Tags, Be the first to tag this record!
Journal Title:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Cite this:Existence, uniqueness, and asymptotic stability for a thermoelastic plate / G. Amendola // Нелінійні коливання. — 2002. — Т. 5, № 4. — С. 147-165. — Бібліогр.: 14 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Description
Summary:In this note we are concerned with the linear theory of a thermoelastic plate when a rate-type equation is assumed for the heat flux. We consider an initial boundary-value problem for this plate and show the existence, uniqueness, and asymptotic stability of the solution. Thermodynamic restrictions on the assumed constitutive equations are also derived. Finally, we give the expression of a pseudo free energy.