Existence, uniqueness, and asymptotic stability for a thermoelastic plate

In this note we are concerned with the linear theory of a thermoelastic plate when a rate-type equation is assumed for the heat flux. We consider an initial boundary-value problem for this plate and show the existence, uniqueness, and asymptotic stability of the solution. Thermodynamic restriction...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2003
Автор: Amendola, G.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2003
Назва видання:Нелінійні коливання
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/176929
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Existence, uniqueness, and asymptotic stability for a thermoelastic plate / G. Amendola // Нелінійні коливання. — 2002. — Т. 5, № 4. — С. 147-165. — Бібліогр.: 14 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-176929
record_format dspace
spelling irk-123456789-1769292021-02-10T01:25:30Z Existence, uniqueness, and asymptotic stability for a thermoelastic plate Amendola, G. In this note we are concerned with the linear theory of a thermoelastic plate when a rate-type equation is assumed for the heat flux. We consider an initial boundary-value problem for this plate and show the existence, uniqueness, and asymptotic stability of the solution. Thermodynamic restrictions on the assumed constitutive equations are also derived. Finally, we give the expression of a pseudo free energy. Розглядається лiнiйна теорiя для термоеластичної платiвки за умови, що тепловий потiк задовольняє рiвняння швидкiсного типу. Доведено iснування, єдинiсть та асимптотичну стiйкiсть розв’язку граничної задачi з початковими умовами. Знайдено термодинамiчнi обмеження на рiвняння задачi. Також наведено вираз для псевдовiльної енергiї. 2003 Article Existence, uniqueness, and asymptotic stability for a thermoelastic plate / G. Amendola // Нелінійні коливання. — 2002. — Т. 5, № 4. — С. 147-165. — Бібліогр.: 14 назв. — англ. 1562-3076 http://dspace.nbuv.gov.ua/handle/123456789/176929 517.95 en Нелінійні коливання Інститут математики НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description In this note we are concerned with the linear theory of a thermoelastic plate when a rate-type equation is assumed for the heat flux. We consider an initial boundary-value problem for this plate and show the existence, uniqueness, and asymptotic stability of the solution. Thermodynamic restrictions on the assumed constitutive equations are also derived. Finally, we give the expression of a pseudo free energy.
format Article
author Amendola, G.
spellingShingle Amendola, G.
Existence, uniqueness, and asymptotic stability for a thermoelastic plate
Нелінійні коливання
author_facet Amendola, G.
author_sort Amendola, G.
title Existence, uniqueness, and asymptotic stability for a thermoelastic plate
title_short Existence, uniqueness, and asymptotic stability for a thermoelastic plate
title_full Existence, uniqueness, and asymptotic stability for a thermoelastic plate
title_fullStr Existence, uniqueness, and asymptotic stability for a thermoelastic plate
title_full_unstemmed Existence, uniqueness, and asymptotic stability for a thermoelastic plate
title_sort existence, uniqueness, and asymptotic stability for a thermoelastic plate
publisher Інститут математики НАН України
publishDate 2003
url http://dspace.nbuv.gov.ua/handle/123456789/176929
citation_txt Existence, uniqueness, and asymptotic stability for a thermoelastic plate / G. Amendola // Нелінійні коливання. — 2002. — Т. 5, № 4. — С. 147-165. — Бібліогр.: 14 назв. — англ.
series Нелінійні коливання
work_keys_str_mv AT amendolag existenceuniquenessandasymptoticstabilityforathermoelasticplate
first_indexed 2025-07-15T14:52:50Z
last_indexed 2025-07-15T14:52:50Z
_version_ 1837725040824549376
fulltext UDC 517.95 EXISTENCE, UNIQUENESS, AND ASYMPTOTIC STABILITY FOR A THERMOELASTIC PLATE* IСНУВАННЯ, ЄДИНIСТЬ ТА АСИМПТОТИЧНА СТIЙКIСТЬ РОЗВ’ЯЗКУ ДЛЯ ТЕРМОЕЛАСТИЧНОЇ ПЛАТIВКИ G. Amendola Dipartimento di Matematica Applicata “U. Dini”, Facoltà di Ingegneria via Diotisalvi 2, 56126-Pisa, Italy In this note we are concerned with the linear theory of a thermoelastic plate when a rate-type equation is assumed for the heat flux. We consider an initial boundary-value problem for this plate and show the existence, uniqueness, and asymptotic stability of the solution. Thermodynamic restrictions on the assumed constitutive equations are also derived. Finally, we give the expression of a pseudo free energy. Розглядається лiнiйна теорiя для термоеластичної платiвки за умови, що тепловий потiк за- довольняє рiвняння швидкiсного типу. Доведено iснування, єдинiсть та асимптотичну стiй- кiсть розв’язку граничної задачi з початковими умовами. Знайдено термодинамiчнi обмеження на рiвняння задачi. Також наведено вираз для псевдовiльної енергiї. 1. Introduction. Many authors have recently considered the thermoelastic model of a thin plate and have studied, in particular, the possibility that the solutions of the thermoelastic plate equations with Dirichlet or Neumann boundary conditions decay exponentially to zero as ti- me goes to infinity [1 – 8]. In [9] analogous problems have been investigated for a thermoelastic plate model characteri- zed by the presence of memory effects on the heat flux vector. Results about existence, uni- queness, and asymptotic stability of the solutions for an initial boundary-value problem have been derived as a consequence of the dissipation properties of the material; moreover, the exponential decay rate of the energy is proved with suitable multiplicative techniques. In this work we consider the constitutive relation for the heat flux vector proposed by Cattaneo [10 – 12] and examine the modified system of equations which describe the linear theory of a thin thermoelastic plate. Thus, we prove the existence, uniqueness, and asymptotic stability of the solution to the initial boundary-value problem corresponding to homogeneous conditions, under suitable hypotheses on the sources we have introduced in the equations. Fi- nally, in the last section, we derive the restrictions placed by the thermodynamic principles on the physical constants and give the expression of a pseudo free energy. 2. Basic equations and position of the problem. We consider a homogeneous, isotropic, thermoelastic plate with a thin uniform thickness. The middle surface between its faces, denoted by Ω, is a bounded and regular domain of the Euclidean two-dimensional space R2 with smooth boundary Γ. We are concerned with small deformations and small variations of the temperature referred to a fixed reference configuration with a uniform absolute temperature Θ0. Let us denote by ϑ the mean variation of the temperature on the cross section of the plate and by u the vertical deflection in the place x ∈ Ω at time t ∈ R+; within the linear approxi- ∗ Work performed under the auspices of C.N.R. and M.U.R.S.T. c© G. Amendola, 2003 ISSN 1562-3076. Нелiнiйнi коливання, 2003, т . 6, N◦ 2 147 148 G. AMENDOLA mation theory, small vibrations of the thin thermoelastic plate are described by the following equations: utt(x, t)− γ∆utt(x, t) + ∆2u(x, t) + α∆ϑ(x, t) = f(x, t), (2.1) ρϑt(x, t)− α∆ut(x, t) +∇ · q(x, t) = g(x, t), (2.2) to which we must add the relation between the heat flux q and the temperature gradient ∇ϑ. Our purpose is to consider the effects of a change of Fourier’s law; therefore, we assume the Cattaneo – Maxwell equation τqt(x, t) + q(x, t) + k∇ϑ(x, t) = l(x, t). (2.3) In these equations we have introduced the sources f, g and l, which must be considered as known functions of (x, t) ∈ Ω×R+; τ, k, ρ, α, γ are physical and constant parameters such that τ > 0, k > 0, ρ > 0, α 6= 0, γ ≥ 0. (2.4) To investigate an initial boundary-value problem for the thermoelastic plate, we must consi- der the initial and boundary conditions, which are assumed homogeneous and are expressed by u(x, 0) = 0, ut(x, 0) = 0, ϑ(x, 0) = 0, q(x, 0) = 0 ∀x ∈ Ω, (2.5) u(x, t) = 0, ∂u(x, t) ∂ν = 0, ϑ(x, t) = 0 ∀(x, t) ∈ Γ×R+, (2.6) where ν = (ν1, ν2) is the external unit normal to Γ. 3. Existence, uniqueness, and asymptotic stability. In order to give a compact definition of solution of the initial boundary-value problem (2.1) – (2.3) with (2.5), (2.6), we introduce the following functional spaces: H2 0(Ω) = { u ∈ H2(Ω) : u = 0, ∂u ∂ν = 0 ∀x ∈ Γ } , U(Ω,R+) = H1(R+;H1(Ω)) ∩ L2(R+;H2 0(Ω)), T (Ω,R+) = L2(R+;H1 0 (Ω)), Q(Ω,R+) = L2(R+;L2(Ω)), F(Ω,R+) = H1(R+;L2(Ω)) ∩ T (Ω,R+), V(Ω,R+) = H1(R+;L2(Ω)) ∩ L2(R+;H1(Ω)). ISSN 1562-3076. Нелiнiйнi коливання, 2003, т . 6, N◦ 2 EXISTENCE, UNIQUENESS, AND ASYMPTOTIC STABILITY FOR A THERMOELASTIC PLATE 149 Definition 3.1. A triplet (u, ϑ,q) ∈ U(Ω,R+) × T (Ω,R+) × Q(Ω,R+) is said to be a weak solution to the problem (2.1) – (2.3) with (2.5) – (2.6) and sources (f, g, l) ∈ [Q(Ω,R+)]3 if the following identity +∞∫ 0 ∫ Ω [−ut(x, t)vt(x, t)− γ∇ut(x, t) · ∇vt(x, t) + ∆u(x, t)∆v(x, t)− − α∇ϑ(x, t) · ∇v(x, t)− ρϑ(x, t)φt(x, t) + α∇ut(x, t) · ∇φ(x, t)− q(x, t) · · ∇φ(x, t)− τq(x, t) · pt(x, t) + q(x, t) · p(x, t)− kϑ(x, t)∇ · p(x, t)]dxdt = = +∞∫ 0 ∫ Ω [f(x, t)v(x, t) + g(x, t)φ(x, t) + l(x, t) · p(x, t)]dxdt (3.1) is satisfied for every triplet (v, φ,p) ∈ U(Ω,R+)×F(Ω,R+)× V(Ω,R+). To study the existence and uniqueness of the solution we identify any function w : R+ → → Rn with its causal extension on R and introduce the time-Fourier transform ŵ. We remember that if w and ŵ belong to L2(R) then also the Fourier transforms ŵ and ŵ′ are L2-functions. Thus, we have ŵ(ω) = +∞∫ −∞ w(s)e−iωsds, ŵ′(ω) = iωŵ(ω)− w(0), w(0) = 1 π +∞∫ −∞ ŵ(ω)dω. (3.2) Because of the isomorphisms which exist between each functional space, we have introduced, and the corresponding space of the Fourier transforms of its functions, denoted with a circumflex ^ , our problem can be transformed as follows. Plancherel’s theorem applied to (3.1), taking account of (3.2)2 where the initial data are zero both for the solutions and for the text functions, yields 1 2π +∞∫ −∞ ∫ Ω {−iωû(x, ω)[iωv̂(x, ω)]∗ − iωγ∇û(x, ω) · [iω∇v̂(x, ω)]∗ + + ∆û(x, ω)[∆v̂(x, ω)]∗ − α∇ϑ̂(x, ω) · [∇v̂(x, ω)]∗ − ρϑ̂(x, ω)[iωφ̂(x, ω)]∗ + + iωα∇û(x, ω) · [∇φ̂(x, ω)]∗ − q̂(x, ω) · [∇φ̂(x, ω)]∗ − τ q̂(x, ω) · [iωp̂(x, ω)]∗ + +q̂(x, ω) · p̂∗(x, ω)− kϑ̂(x, ω)[∇ · p̂(x, ω)]∗ } dxdω = ISSN 1562-3076. Нелiнiйнi коливання, 2003, т . 6, N◦ 2 150 G. AMENDOLA = 1 2π +∞∫ −∞ ∫ Ω [f̂(x, ω)v̂∗(x, ω) + ĝ(x, ω)φ̂∗(x, ω) + l̂(x, ω) · p̂∗(x, ω)]dxdω, (3.3) where ∗ denotes the complex conjugate. We can now choose v̂(x, ω) = v1(x)v2(ω), φ̂(x, ω) = φ1(x)φ2(ω), p̂(x, ω) = p1(x)p2(ω). The arbitrariness of (v2, φ2, p2) allows us to derive from (3.3) the following identity:∫ Ω { −ω2û(x, ω)v∗1(x)− ω2γ∇û(x, ω) · ∇v∗1(x) + ∆û(x, ω)∆v∗1(x)− α∇ϑ̂(x, ω) · · ∇v∗1(x) + iωρϑ̂(x, ω)φ∗1(x) + iωα∇û(x, ω) · ∇φ∗1(x)− q̂(x, ω) · ∇φ∗1(x) + +iωτ q̂(x, ω) · p∗1(x) + q̂(x, ω) · p∗1(x)− kϑ̂(x, ω)∇ · p∗1(x) } dx = = ∫ Ω [f̂(x, ω)v∗1(x) + ĝ(x, ω)φ∗1(x) + l̂(x, ω) · p∗1(x)]dx. (3.4) We observe that the problem (2.1) – (2.3) with (2.5), (2.6), in terms of Fourier’s transforms, is expressed by the system −ω2û(x, ω) + γω2∆û(x, ω) + ∆2û(x, ω) + α∆ϑ̂(x, ω) = f̂(x, ω), (3.5) iωρϑ̂(x, ω)− iωα∆û(x, ω) +∇ · q̂(x, ω) = ĝ(x, ω), (3.6) iωτ q̂(x, ω) + q̂(x, ω) + k∇ϑ̂(x, ω) = l̂(x, ω) ∀x ∈ Ω, (3.7) û(x, ω) = 0, ∂û(x, ω) ∂ν = 0, ϑ̂(x, ω) = 0 ∀x ∈ Γ. (3.8) The dependence on x is sometimes understood and not written. Thus, we can give the following definition. Definition 3.2. A triplet (û(ω), ϑ̂(ω), q̂(ω)) ∈ H2 0(Ω) ×H1 0 (Ω) × L2(Ω) with ω ∈ R is called a weak solution to the problem (3.5) – (3.8) with (f̂(ω), ĝ(ω), l̂(ω)) ∈ [L2(Ω)]3 if it satisfies (3.4) for every triplet (v1, φ1,p1) ∈ H2 0(Ω)×H1 0 (Ω)×H1(Ω). Let us put I(ω) = ∫ Ω [ ω2 ( |û|2 + |∇û|2 ) + |∆û|2 + ∣∣∣ϑ̂∣∣∣2 + ∣∣∣∇ϑ̂∣∣∣2 + |q̂|2 ] dx; (3.9) we have the following result. ISSN 1562-3076. Нелiнiйнi коливання, 2003, т . 6, N◦ 2 EXISTENCE, UNIQUENESS, AND ASYMPTOTIC STABILITY FOR A THERMOELASTIC PLATE 151 Theorem 3.1. If (û(ω), ϑ̂(ω), q̂(ω)) ∈ H2 0(Ω) × H1 0 (Ω) × L2(Ω) is a weak solution to the problem (3.5) – (3.8) with (f̂(ω), ĝ(ω), l̂(ω)) ∈ [L2(Ω)]3, then there exists a positive coefficient δ(ω), depending on the material constants and Ω, such that I(ω) ≤ δ2(ω) ∫ Ω (∣∣∣f̂ ∣∣∣2 + |ĝ|2 + ∣∣∣̂l∣∣∣2) dx, (3.10) where ω ∈ R. Proof. Let us consider the system (3.5) – (3.7), where we first suppose ω 6= 0. Multiplying (3.5) by û∗ we get a relation where we can integrate by parts taking account of the boundary conditions (3.8); thus, it assumes the following form −ω2 ∫ Ω |û|2 dx + γ ∫ Ω |∇û|2 dx + ∫ Ω |∆û|2 dx− α ∫ Ω ∇ϑ̂ · ∇û∗dx = ∫ Ω f̂ û∗dx. (3.11) Analogously, from (3.6) multiplied by û∗ and ϑ̂∗ we get iω ρ∫ Ω ϑ̂û∗dx + α ∫ Ω |∇û|2 dx − ∫ Ω q̂ · ∇û∗dx = ∫ Ω ĝû∗dx, (3.12) iω ρ∫ Ω ∣∣∣ϑ̂∣∣∣2 dx + α ∫ Ω ∇û · ∇ϑ̂∗dx − ∫ Ω q̂ · ∇ϑ̂∗dx = ∫ Ω ĝϑ̂∗dx. (3.13) Then, in a similar manner the scalar products of (3.7) by q̂∗, ∇ϑ̂∗ and ∇û∗ yield (1 + iωτ) ∫ Ω |q̂|2 dx + k ∫ Ω ∇ϑ̂ · q̂∗dx = ∫ Ω l̂ · q̂∗dx, (3.14) (1 + iωτ) ∫ Ω q̂ · ∇ϑ̂∗dx + k ∫ Ω ∣∣∣∇ϑ̂∣∣∣2 dx = ∫ Ω l̂ · ∇ϑ̂∗dx, (3.15) (1 + iωτ) ∫ Ω q̂ · ∇û∗dx + k ∫ Ω ∇ϑ̂ · ∇û∗dx = ∫ Ω l̂ · ∇û∗dx. (3.16) First, we consider the imaginary part of (3.11) Im ∫ Ω ∇ϑ̂ · ∇û∗dx = − 1 α Im ∫ Ω f̂ û∗dx, (3.17) ISSN 1562-3076. Нелiнiйнi коливання, 2003, т . 6, N◦ 2 152 G. AMENDOLA which allows us to write the real part of (3.13) as follows: Re ∫ Ω q̂ · ∇ϑ̂∗dx = −Re ∫ Ω ĝϑ̂∗dx− Im ∫ Ω f̂ωû∗dx; (3.18) thus, from the real part of (3.14), we have ∫ Ω |q̂|2 dx = Re ∫ Ω l̂ · q̂∗dx + k Re ∫ Ω ĝϑ̂∗dx + Im ∫ Ω f̂ωû∗dx  . (3.19) Then, we take the imaginary part of (3.15), which, on account of (3.18), becomes Im ∫ Ω q̂ · ∇ϑ̂∗dx = Im ∫ Ω l̂ · ∇ϑ̂∗dx + ωτ Re ∫ Ω ĝϑ̂∗dx + Im ∫ Ω f̂ωû∗dx  (3.20) and use it, together with (3.18), to derive from the real part of (3.15) the following relation: ∫ Ω ∣∣∣∇ϑ̂∣∣∣2 dx = 1 k Re ∫ Ω l̂ · ∇ϑ̂∗dx+ωτ Im ∫ Ω l̂ · ∇ϑ̂∗dx + +(1 + ω2τ2) Re ∫ Ω ĝϑ̂∗dx + Im ∫ Ω f̂ωû∗dx  . (3.21) To estimate the other terms of (3.9), some other relations must be determined. We begin with the imaginary part of (3.13), which, by virtue of (3.20), yields ωαRe ∫ Ω ∇û · ∇ϑ̂∗dx = Im ∫ Ω ĝϑ̂∗dx + Im ∫ Ω l̂ · ∇ϑ̂∗dx + +ωτ Re ∫ Ω ĝϑ̂∗dx + Im ∫ Ω f̂ωû∗dx − ωρ ∫ Ω ∣∣∣ϑ̂∣∣∣2 dx. (3.22) Then, subtracting the real part of (3.16), multiplied by ωτ , from the imaginary part of (3.16), on ISSN 1562-3076. Нелiнiйнi коливання, 2003, т . 6, N◦ 2 EXISTENCE, UNIQUENESS, AND ASYMPTOTIC STABILITY FOR A THERMOELASTIC PLATE 153 account of (3.17) and (3.22), we get Im ∫ Ω q̂ · ∇û∗dx = 1 1 + ω2τ2 Im ∫ Ω l̂ · ∇û∗dx− ωτ Re ∫ Ω l̂ · ∇û∗dx + + k α (1 + ω2τ2) Im ∫ Ω f̂ û∗dx+ τk α Im ∫ Ω ĝϑ̂∗dx + Im ∫ Ω l̂ · ∇ϑ̂∗dx + +ωτ Re ∫ Ω ĝϑ̂∗dx− ωρ ∫ Ω ∣∣∣ϑ̂∣∣∣2 dx  . (3.23) Adding the imaginary part of (3.16), multiplied again by ωτ , to its real part and using (3.17) and (3.22), we obtain Re ∫ Ω q̂ · ∇û∗dx = 1 1 + ω2τ2 Re ∫ Ω l̂ · ∇û∗dx + ωτ Im ∫ Ω l̂ · ∇û∗dx− k ωα × × Im ∫ Ω ĝϑ̂∗dx + Im ∫ Ω l̂ · ∇ϑ̂∗dx + ωτ Re ∫ Ω ĝϑ̂∗dx− ωρ ∫ Ω ∣∣∣ϑ̂∣∣∣2 dx  . We now observe that∫ Ω |û|2 dx ≤ λu(Ω) ∫ Ω |∇û|2 dx, ∫ Ω ∣∣∣ϑ̂∣∣∣2 dx ≤ λϑ(Ω) ∫ Ω ∣∣∣∇ϑ̂∣∣∣2 dx (3.24) by virtue of Poincaré’s inequality, where λu and λϑ are positive constants depending on the domain Ω. Hence we can increase the following term − ρ α ω2 Re ∫ Ω ϑ̂û∗dx ≤ ω2 ∫ Ω |û|2 dx 1/2 ρ2 α2 ∫ Ω ∣∣∣ϑ̂∣∣∣2 dx 1/2 ≤ ≤ ω2 2 ∫ Ω |∇û|2 dx + ρ2 α2 λu(Ω) ∫ Ω ∣∣∣ϑ̂∣∣∣2 dx  , which appears in the imaginary part of (3.12) multiplied by ω/α, whence, using (3.23), (3.24)2 ISSN 1562-3076. Нелiнiйнi коливання, 2003, т . 6, N◦ 2 154 G. AMENDOLA and (3.21), we have the following inequality: ∫ Ω |ω∇û|2 dx ≤ 1 kα2 { 2k2 + ω2ρλϑ(Ω) [ ρλu(Ω) ( 1 + ω2τ2 ) − 2τk ]} × × ( Im ∫ Ω f̂ωû∗dx + ωτ 1 + ω2τ2 Im ∫ Ω l̂ · ∇ϑ̂∗dx ) + 2 α Im ∫ Ω ĝωû∗dx + + 2 α 1 1 + ω2τ2 Im ∫ Ω l̂ · ω∇û∗dx− ωτ ( Re ∫ Ω l̂ · ω∇û∗dx − − k α Im ∫ Ω ĝϑ̂∗dx )+ ρλϑ(Ω) kα2 ω2 1 + ω2τ2 [ρλu(Ω)(1 + ω2τ2)− − 2τk] Re ∫ Ω l̂ · ∇ϑ̂∗dx + ω2τ2 kα2 { 2k2 1 + ω2τ2 + ρλϑ(Ω) τ2 [ρλu(Ω)× × (1 + ω2τ2)− 2τk] } Re ∫ Ω ĝϑ̂∗dx. (3.25) Finally, the real part of (3.11), taking into account (3.22) divided by ω, (3.24), (3.25) and (3.21), gives ∫ Ω |∆û|2 dx ≤ 1 ω Re ∫ Ω f̂ωû∗dx + 2 α [γ + λu(Ω)] { Im ∫ Ω ĝωû∗dx+ 1 1 + ω2τ2 × × [ Im ∫ Ω l̂ · ω∇û∗dx− ωτ Re ∫ Ω l̂ · ω∇û∗dx ]} + { τ + 1 k ( ρλϑ(Ω)(1 + ω2τ2) + + γ + λu(Ω) α2 { 2k2 + ρλϑ(Ω)ω2[ρλu(Ω)(1 + ω2τ2)− 2τk] })} Im ∫ Ω f̂ωû∗dx + + { τ + 1 k ( ρλϑ(Ω)(1 + ω2τ2) + [γ + λu(Ω)] ω2τ2 α2 { 2k2 1 + ω2τ2 + ρλϑ(Ω) τ2 × ISSN 1562-3076. Нелiнiйнi коливання, 2003, т . 6, N◦ 2 EXISTENCE, UNIQUENESS, AND ASYMPTOTIC STABILITY FOR A THERMOELASTIC PLATE 155 × [ρλu(Ω)(1 + ω2τ2)− 2τk] })} Re ∫ Ω ĝϑ̂∗dx + 1 ω { 1 + [γ + λu(Ω)] 2k α2 × × ω2τ2 1 + ω2τ2 } Im ∫ Ω ĝϑ̂∗dx + ρλϑ(Ω) k { 1 + γ + λu(Ω) α2 ω2 1 + ω2τ2 [ρλu(Ω)× × (1 + ω2τ2)− 2τk] } Re ∫ Ω l̂ · ∇ϑ̂∗dx + 1 ω { 1 + ω2τ k ( ρλϑ(Ω) + + γ + λu(Ω) α2 1 1 + ω2τ2 { 2k2 + ρλϑ(Ω)ω2[ρλu(Ω) ( 1 + ω2τ2 ) − − 2τk]} )} Im ∫ Ω l̂ · ∇ϑ̂∗dx. (3.26) We can now increase (3.9), using (3.19), (3.21), (3.25), (3.26), together with (3.24), to obtain I(ω) ≤ [1 + λu(Ω)] ∫ Ω |ω∇û|2 dx + ∫ Ω |∆û|2 dx + [1 + λϑ(Ω)] ∫ Ω ∣∣∣∇ϑ̂∣∣∣2 dx + + ∫ Ω |q̂|2 dx ≤ 1 ω Re ∫ Ω f̂ωû∗dx + (c1 { 2k + c4ω 2[c3(1 + τ2ω2)− 2τk] } + + τ + k + c2(1 + τ2ω2)) Im ∫ Ω f̂ωû∗dx + 2c1α Im ∫ Ω ĝωû∗dx + ( c1τ 2ω2 × × { 2k 1 + τ2ω2 + c4 τ2 [c3(1 + τ2ω2)− 2τk] } + τ + k + c2(1 + τ2ω2) ) × × Re ∫ Ω ĝϑ̂∗dx + 1 ω ( 1 + 2c1kτω 2 1 + τ2ω2 ) Im ∫ Ω ĝϑ̂∗dx + Re ∫ Ω l̂ · q∗dx + + ( c1c4ω 2 1 + τ2ω2 [c3(1 + τ2ω2)− 2τk] + c2 ) Re ∫ Ω l̂ · ∇ϑ̂∗dx + ISSN 1562-3076. Нелiнiйнi коливання, 2003, т . 6, N◦ 2 156 G. AMENDOLA + 1 ω ( 1 + τω2 ( c1 { 2k + c4ω 2[c3(1 + τ2ω2)− 2τk] } 1 1 + τ2ω2 + c2 )) × × Im ∫ Ω l̂ · ∇ϑ̂∗dx + 2c1α 1 + τ2ω2 −τωRe ∫ Ω l̂ · ω∇û∗dx + + Im ∫ Ω l̂ · ω∇û∗dx  , (3.27) where we have introduced the following positive constants: c1 = 1 + γ + 2λu(Ω) α2 , c2 = 1 + (1 + ρ)λϑ(Ω) k , c3 = ρλu(Ω), c4 = ρλϑ(Ω) k . Putting γ1(ω) = 1 | ω | + c1[2k + c4ω 2 | c3(1 + τ2ω2)− 2τk |] + τ + k + c2(1 + τ2ω2), γ2(ω) = 2c1 | α |, γ3(ω) = c1τ 2ω2 [ 2k 1 + τ2ω2 + c4 τ2 | c3(1 + τ2ω2)− 2τk | ] + τ + k + + c2(1 + τ2ω2) + 1 | ω | ( 1 + 2c1kτω 2 1 + τ2ω2 ) , γ4(ω) = 1, γ5(ω) = c1c4ω 2 1 + τ2ω2 | c3(1 + τ2ω2)− 2τk | +c2 + 1 | ω | ( 1 + τω2 { c1[2k + + c4ω 2 | c3(1 + τ2ω2)− 2τk |] 1 1 + τ2ω2 + c2 }) , γ6(ω) = 2c1 | α | 1 + τ2ω2 (1 + τ | ω |), ISSN 1562-3076. Нелiнiйнi коливання, 2003, т . 6, N◦ 2 EXISTENCE, UNIQUENESS, AND ASYMPTOTIC STABILITY FOR A THERMOELASTIC PLATE 157 the inequality (3.27) can be written as follows: I(ω) ≤γ(ω) ( | ∫ Ω f̂ωû∗dx | + | ∫ Ω ĝωû∗dx | + ∫ Ω ĝϑ̂∗dx+ | ∫ Ω l̂ · q̂∗dx | + + | ∫ Ω l̂ · ∇ϑ̂∗dx | + | ∫ Ω l̂ · ω∇û∗dx | ) , (3.28) where the positive function γ(ω) is given by γ(ω) = max {γi(ω), i = 1, 2, ..., 6} . From (3.28) we have I(ω) ≤ γ(ω) [∫ Ω | f̂ |2 dx  1 2 ∫ Ω |ωû|2 dx  1 2 + ∫ Ω |ĝ|2 dx  1 2 ∫ Ω |ωû|2 dx  1 2 + + ∫ Ω |ĝ|2 dx  1 2 ∫ Ω ∣∣∣ϑ̂∣∣∣2 dx  1 2 + ∫ Ω | l̂ |2 dx  1 2 ∫ Ω |q̂|2 dx  1 2 + + ∫ Ω | l̂ |2 dx  1 2 ∫ Ω ∣∣∣∇ϑ̂∣∣∣2 dx  1 2 + ∫ Ω | l̂ |2 dx  1 2 ∫ Ω |ω∇û|2 dx  1 2] ≤ ≤ δ(ω) [∫ Ω (∣∣∣f̂ ∣∣∣2 + |ĝ|2 + ∣∣∣̂l∣∣∣2) dx] 1 2 [∫ Ω ( |ωû|2 + |ω∇û|2 + |∆û|2 + + ∣∣∣ϑ̂∣∣∣2 + ∣∣∣∇ϑ̂∣∣∣2 + |q̂|2 ) dx ] 1 2 and hence I 1 2 (ω) ≤ δ(ω) ∫ Ω (∣∣∣f̂ ∣∣∣2 + |ĝ|2 + ∣∣∣̂l∣∣∣2) dx  1 2 , whence (3.10) follows. ISSN 1562-3076. Нелiнiйнi коливання, 2003, т . 6, N◦ 2 158 G. AMENDOLA We now consider the case ω = 0, where the problem (3.5) – (3.8) becomes ∆2û(x, 0) + α∆ϑ̂(x, 0) = f̂(x, 0), (3.29) ∇ · q̂(x, 0) = ĝ(x, 0), (3.30) q̂(x, 0) + k∇ϑ̂(x, 0) = l̂(x, 0) ∀x ∈ Ω, (3.31) û(x, 0) = 0, ∂û(x, 0) ∂ν = 0, ϑ̂(x, 0) = 0 ∀x ∈ Γ. (3.32) It is enough to multiply (3.29) by û∗(x, 0) and (3.30) by ϑ̂∗(x, 0), to take the inner products of (3.31) with q̂∗(x, 0) and ∇ϑ̂∗(x, 0) and consider their real parts to obtain∫ Ω |∆û|2 dx = Re ∫ Ω f̂ û∗dx + αRe ∫ Ω ∇ϑ̂ · ∇û∗dx, (3.33) Re ∫ Ω q̂ · ∇ϑ̂∗dx = −Re ∫ Ω ĝϑ̂∗dx, (3.34) ∫ Ω |q̂|2 dx = Re ∫ Ω l̂ · q̂∗dx− kRe ∫ Ω ∇ϑ̂ · q̂∗dx, (3.35) ∫ Ω ∣∣∣∇ϑ̂∣∣∣2 dx = 1 k Re ∫ Ω l̂ · ∇ϑ̂∗dx−Re ∫ Ω q̂ · ∇ϑ̂∗dx  . (3.36) We now recall that if û ∈ H2 0(Ω) then ‖ û ‖ + ‖ ∇û ‖≤ C ‖ ∆û ‖ [9], where C is a constant, whence we can consider∫ Ω |û|2 dx ≤ C2 ∫ Ω |∆û|2 dx, ∫ Ω |∇û|2 dx ≤ C2 ∫ Ω |∆û|2 dx together with (3.24). Thus, it follows that I0 = ∫ Ω ( |û|2 + |∇û|2 + |∆û|2 + ∣∣∣ϑ̂∣∣∣2 + ∣∣∣∇ϑ̂∣∣∣2 + |q̂|2 ) dx ≤ ≤ (1 + 2C2) ∫ Ω |∆û|2 dx + [1 + λϑ(Ω)] ∫ Ω ∣∣∣∇ϑ̂∣∣∣2 dx + ∫ Ω |q̂|2 dx, (3.37) ISSN 1562-3076. Нелiнiйнi коливання, 2003, т . 6, N◦ 2 EXISTENCE, UNIQUENESS, AND ASYMPTOTIC STABILITY FOR A THERMOELASTIC PLATE 159 where all the functions must be considered in (x, 0). We observe that the last term in (3.33), which appears in (3.37) multiplied by (1 + 2C2), can be increased as follows: (1 + 2C2)αRe ∫ Ω ∇ϑ̂ · ∇û∗dx ≤ (1 + 2C2) | αRe ∫ Ω ∇ϑ̂ · ∇û∗dx |≤ ≤ 1 2 α2(1 + 2C2)2 ∫ Ω ∣∣∣∇ϑ̂∣∣∣2 dx + ∫ Ω |∇û|2 dx  , (3.38) where the last integral is present in the expression of I0 too. Then, substituting into (3.37) the inequality derived from (3.33) by using (3.38) and the two relations (3.35) and (3.36), after eliminating their last integrals by using (3.34), the inequality (3.37) can be put in the following form: I0 ≤ 2(1 + 2C2) Re ∫ Ω f̂ û∗dx + 1 k { 2[1 + λϑ(Ω)] + α2(1 + 2C2)2 + + 2k2 } Re ∫ Ω ĝϑ̂∗dx + 1 k { 2[1 + λϑ(Ω)] + α2(1 + 2C2)2 } Re ∫ Ω l̂ · ∇ϑ̂∗dx + + 2 Re ∫ Ω l̂ · q̂∗dx. (3.39) Therefore, denoting by m the maximum of the coefficients of the four integrals at the right- hand side of (3.39) and proceeding as we have already done to derive (3.10), we see that if ω = 0, (3.10) must be replaced by I0 ≤ M ∫ Ω (∣∣∣f̂(x, 0) ∣∣∣2 + |ĝ(x, 0)|2 + ∣∣∣̂l(x, 0) ∣∣∣2) dx, (3.40) where M = 16m2. This proves the theorem. We observe that δ(ω) tends to infinity as ω4 if ω approaches infinity. Therefore, we introduce the following space: W(Ω,R+) = { (f, g, l) ∈ [Q(Ω,R+)]3 : ∂n+1 ∂tn+1 (f, g, l) ∈ [Q(Ω,R+)]3, [ ∂n ∂tn (f, g, l) ] t=0 = 0 (n = 0, 1, 2, 3) } . ISSN 1562-3076. Нелiнiйнi коливання, 2003, т . 6, N◦ 2 160 G. AMENDOLA Theorem 3.2. If the sources (f, g, l) ∈ W(Ω,R+), then the inverse Fourier transforms of (û, ϑ̂, q̂) exist and are L2-functions. Proof. As we have already observed, in the inequality (3.10) of Theorem 3.1, δ depends on ω in such a way as to assure that the integral of the right-hand side over R exists if (f̂ , ĝ, l̂) ∈ ∈ Ŵ(Ω,R). That is, we have +∞∫ −∞ ∫ Ω (∣∣∣δ(ω)f̂(x, ω) ∣∣∣2 + |δ(ω)ĝ(x, ω)|2 + ∣∣∣δ(ω)̂l(x, ω) ∣∣∣2) dxdω < +∞; therefore, it follows that I(ω) is also integrable over R and hence Plancherel’s theorem assures the existence of the inverse transforms of (û, ϑ̂, q̂). This completes the proof of the theorem. Corollary 3.1. Under the hypotheses of Theorem 3.2, if we consider two solutions of our problem, (û(i), ϑ̂(i), q̂(i)), each of which corresponds to two given source fields (f̂ (i), ĝ(i), l̂(i)), i = 1, 2, we have∥∥∥(û(1) − û(2),ϑ̂(1) − ϑ̂(2), q̂(1) − q̂(2)) ∥∥∥2 ≤ ≤ 1 2π +∞∫ −∞ ∫ Ω δ2(ω) (∣∣∣f̂ (1) − f̂ (2) ∣∣∣2 + ∣∣∣ĝ(1) − ĝ(2) ∣∣∣2 + ∣∣∣̂l(1) − l̂(2) ∣∣∣2) dxdω. (3.41) This result follows at once from the linearity of (3.5) – (3.7) and from Theorem 3.1. Theorem 3.3. For any fixed ω ∈ R and every (f̂ , ĝ, l̂) ∈ [L2(Ω)]3, the system (3.5) – (3.8) admits at most only one solution (û, ϑ̂, q̂) ∈ H2 0(Ω)×H1 0 (Ω)× L2(Ω). Proof. This uniqueness theorem is a consequence of Theorem 3.1, since it is equivalent to establishing that the homogeneous system given by (3.5) – (3.7), with the homogeneous boundary conditions (3.8), has only the zero solution in H2 0(Ω) ×H1 0 (Ω) × L2(Ω). Inequalities (3.10) and (3.40) assure the uniqueness for every ω ∈ R, which proves the theorem. Theorem 3.4. For any triplet (f, g, l) ∈ W(Ω,R+) there exists a solution (u, ϑ,q) ∈ U(Ω,R+)× T (Ω,R+)×Q(Ω,R+) of the problem (2.1) – (2.3) with (2.5), (2.6) in the sense of Definition 3.1. Proof. In order to prove the existence of a solution to our problem, we show that the set A = { (f̂ , ĝ, l̂) ∈ Ŵ(Ω,R) : there exists (û, ϑ̂, q̂) ∈ Û(Ω,R)× T̂ (Ω,R) × × Q̂(Ω,R) which satisfies (3.3) ∀(v̂, φ̂, p̂) ∈ Û(Ω,R)× F̂(Ω,R)× ×V̂(Ω,R) } is dense and closed in Ŵ(Ω,R). ISSN 1562-3076. Нелiнiйнi коливання, 2003, т . 6, N◦ 2 EXISTENCE, UNIQUENESS, AND ASYMPTOTIC STABILITY FOR A THERMOELASTIC PLATE 161 Denoting by ξ[(û, ϑ̂, q̂), (v̂, φ̂, p̂)] the expression in the left-hand side of (3.3), we can write this identity as follows: ξ[(û, ϑ̂, q̂), (v̂, φ̂, p̂)] = 1 2π 〈(f̂ , ĝ, l̂), (v̂, φ̂, p̂)〉. (3.42) To prove that A is dense, we denote by A its closure in Ŵ(Ω,R) and suppose that there exists (f̂ (0), ĝ(0), l̂(0)) ∈ Ŵ(Ω,R)\A and (f̂ (0), ĝ(0), l̂(0)) 6= 0. Thus, the Hahn – Banach theorem states that there exists (v̂(0), φ̂(0), p̂(0)) ∈ Û(Ω,R)× F̂(Ω,R)× V̂(Ω,R) such that 〈(f̂ (0), ĝ(0), l̂(0)), (v̂(0), φ̂(0), p̂(0))〉 6= 0, 〈(f̂ , ĝ, l̂), (v̂(0), φ̂(0), p̂(0))〉 = 0 ∀(f̂ , ĝ, l̂) ∈ A. (3.43) Conditions (3.43)2 and (3.42) yield ξ[(û, ϑ̂, q̂), (v̂(0), φ̂(0), p̂(0))] = 0 ∀(û, ϑ̂, q̂) ∈ Û(Ω,R)× T̂ (Ω,R)× Q̂(Ω,R) from which, therefore, with the same technique used to prove the uniqueness theorem, we find that (v̂(0), φ̂(0), p̂(0)) = 0, against (3.43)1. Hence, the set A is dense. To prove that A is closed, let us consider, for every (f̂ , ĝ, l̂) ∈ Ŵ(Ω,R), a sequence{ (f̂ (n), ĝ(n), l̂(n)) ∈ A, n = 1, 2, ... } convergent to (f̂ , ĝ, l̂) and the sequence of the corresponding solutions (û(n), ϑ̂(n), q̂(n)) ∈ ∈ Û(Ω,R)× T̂ (Ω,R)× Q̂(Ω,R). Using (3.41) of Corollary 3.1, we have∥∥∥(û(n) − û(m), ϑ̂(n) − ϑ̂(m), q̂(n) − q̂(m)) ∥∥∥2 ≤ ≤ 1 2π +∞∫ −∞ ∫ Ω δ2(ω) (∣∣∣f̂ (n) − f̂ (m) ∣∣∣2 + ∣∣∣ĝ(n) − ĝ(m) ∣∣∣2 + ∣∣∣̂l(n) − l̂(m) ∣∣∣2) dxdω, and hence it follows that the sequence { (û(n), ϑ̂(n), q̂(n)), n = 1, 2, ... } is a Cauchy sequence and lim n→+∞ (û(n), ϑ̂(n), q̂(n)) = (û, ϑ̂, q̂, ) ∈ Û(Ω,R)× T̂ (Ω,R)× Q̂(Ω,R) for the completeness of the space. Then, we consider the sequence of identities, obtained by substituting into (3.3) each soluti- on with the corresponding triplet of sources of the two sequences now introduced; the limit of ISSN 1562-3076. Нелiнiйнi коливання, 2003, т . 6, N◦ 2 162 G. AMENDOLA these identities as n → +∞ yields an analogous identity for the limits (û, ϑ̂, q̂) and (f̂ , ĝ, l̂) and hence (f̂ , ĝ, l̂) ∈ A. The application of the Plancherel theorem allows us to complete the proof of the existence of the solution to our problem. This ends the proof of the theorem. 4. Thermodynamic restrictions and free energy. In this last section we examine the restricti- ons placed by the thermodynamic principles on the material constants which characterize the behaviour of the thin homogeneous, isotropic, thermoelastic plate, we have considered in the previous sections; moreover we give an explicit representation of a pseudo free energy. With the notation already introduced in Section 2, under the hypotheses of small deformati- ons and small variations of the temperature with respect to the given reference configuration and to the absolute temperature Θ0, we assume the following constitutive equations for the mean stress tensor T and the rate at which heat is absorbed for a unit volum h: T(x, t) = −a∇[∆u(x, t)] + b∇utt(x, t)− εg(x, t), (4.1) ρ0h(x, t) = Θ0β∆ut(x, t) + ρ0cϑt(x, t), (4.2) where g=∇ϑ, ρ0 is the mass density, c is the heat capacity and a, b, ε, β are constitutive constants. The fundamental system of the linear theory of thermoelasticity, when Cattaneo – Maxwell’s equation is assumed as the relation between the heat flux and the temperature gradient, is ρ0utt(x, t) = ∇ ·T(x, t) + ρ0f(x, t), (4.3) ρ0h(x, t) = −∇ · q(x, t) + ρ0g(x, t), (4.4) τqt(x, t) + q(x, t) = −k∇ϑ(x, t), (4.5) where we have introduced the body force f and the heat source g, k and τ(> 0) being two constants. We observe that the constitutive equations (4.1), (4.2) characterize a thermodynamic system when the state is σ(x) = (∇ut(x),∆u(x), ϑ(x),q(x)) at x ∈ Ω and the thermokinetic process of duration dP ∈ R+ is a piecewise continuous map defined on [0, dP ) by P (x, t) = (∇[∆u(x, t)], ∇utt(x, t),∆ut(x, t), ϑt(x, t),g(x, t)). If we introduce a state-transition function ρ̃ : Σx×Πx → → Σx which assigns to the initial state σi, of the space Σx at the point x, and the process P , of the thermokinetic process space Πx, the final state σf , that is σf = ρ̃(σi, P ), we can consider Σx σ0 = {σ ∈ Σx : ∃ P ∈ Πx, σ = ρ̃(σ0, P )}, the subset of the states which can be obtained from a fixed state σ0 with a process P . The assumed constitutive equations are functions of (σ, P ), that is, we have T = T̃(σ, P ), h = h̃(P ), q = q̃(σ, P ). Thus, we recall the definition of a cycle constant on Γ [9], which is a pair (σ(x), P (x)) such that ρ̃(σ0(x), P (x)) = σ0(x) ∀x ∈ Ω and σ(x, t) = ρ̃(σ0(x), P[0,t)(x)) is constant ∀x ∈ Γ and t ∈ [0, dP ), P[0,t) being the restriction of P to [0, t) ⊂ [0, dP ). Now, we give the expressions of the two law of thermodynamics [10], the first of which yields the existence of the internal energy ẽ : Σx σ0 → R such that ρ0ẽt(σ(x, t)) = ρ0h̃(P (x, t)) + T̃(σ(x, t), P (x, t)) · ∇ut(x, t) (4.6) ISSN 1562-3076. Нелiнiйнi коливання, 2003, т . 6, N◦ 2 EXISTENCE, UNIQUENESS, AND ASYMPTOTIC STABILITY FOR A THERMOELASTIC PLATE 163 for continuous processes, while the second one states that the inequality ∮ ∫ Ω { ρ0h̃(P (x, t)) Θ0 + ϑ(x, t) + q̃(σ(x, t), P (x, t)) · g(x, t) [Θ0 + ϑ(x, t)]2 } dxdt ≤ 0 (4.7) holds for an isolated material Ω for every pair (σ0(x), P (x)) which defines cycle constant on Γ, the equality sign referring to reversible processes. Since we are concerned with a linear theory, we must derive an approximation of the second law; therefore, neglecting the terms of order greater than two, (4.7) assumes the form 1 Θ2 0 ∮ ∫ Ω { ρ0h̃(P (x, t))[Θ0 − ϑ(x, t)] + q̃(σ(x, t), P (x, t)) · g(x, t) } dxdt ≤ ≤ 1 Θ2 0 ∮ ∫ Γ F̃(σ(x, t), P (x, t)) · ν(x)dΓdt, (4.8) where we have added to the right-hand side the surface integral in order to consider the global formulation of the second law in agreement with the existence of the flux F. From the inequality (4.8), under the hypotheses that the material, we are considering, is self-consistent, that is, when the constitutive equations, relative to x ∈ Ω and t ∈ R+, do not depend upon fields outside Ω at time t, it follows that 1 Θ2 0 ∮ { ρ0h̃(P (x, t))[Θ0 − ϑ(x, t)] + q̃(σ(x, t), P (x, t)) · g(x, t) − −∇ · F̃(σ(x, t), P (x, t)) } dt ≤ 0, for any x ∈ Ω, since (4.8) must hold for any subbody of Ω. Furthermore, as a consequence of the second law, it is possible to show [11] the existence of the entropy η̂ : Σx σ0 → R for any x ∈ Ω such that η̃t(σ(x, t)) ≥ 1 ρ0Θ2 0 { ρ0h̃(P (x, t))[Θ0 − ϑ(x, t)] + + q̃(σ(x, t), P (x, t)) · g(x, t)−∇ · F̃(σ(x, t), P (x, t)) } (4.9) for any smooth process. In order to obtain consequences of the laws of thermodynamics on the material constants, we observe that (4.8), elimintaing ρ0Θ0h by means of (4.6) and integrating on a cycle, reduces to ISSN 1562-3076. Нелiнiйнi коливання, 2003, т . 6, N◦ 2 164 G. AMENDOLA ∮ [ρ0h̃(P (t))ϑ(t) + Θ0T̃(σ(t), P (t)) · ∇ut(t)− q̃(σ(t), P (t)) · g(t) + +∇ · F̃(σ(t), P (t))]dt ≥ 0, (4.10) where the dependence on x is understood. Substituting the expression (4.2) of h, assuming for the heat flux F the following form: F(x, t) = Θ0[a∆u(x, t)∇ut(x, t)− βϑ(x, t)∇ut(x, t)], and using (4.5), from (4.10) we get∮ { ρ0cϑt(t)ϑ(t) + Θ0[b∇utt(x, t)− εg(x, t)] · ∇ut(t) + 1 k [τqt(t) + + q(t)] · q(t) + Θ0a∆ut(t)∆u(t)− βΘ0g(t) · ∇ut(t)] } dt ≥ 0. Since the integral is taken on a cycle, this inequality reduces to∮ [ 1 k q2(t)−Θ0(ε+ β)g(t) · ∇ut(t)] ] dt ≥ 0, which holds for every g; therefore, we have the restrictions ε+ β = 0, k > 0. (4.11) Finally, we introduce the following approximate pseudo-free energy: ψ(x, t) = e(x, t)−Θ0η(x, t), which, using (4.6) to eliminate ρ0Θ0h, allows us to transform (4.9) as follows: ρ0ψt(t) ≤ ρ0 Θ0 h(t)ϑ(t) + T(t) · ∇ut(t)− 1 Θ0 q(t) · g(t) + 1 Θ0 ∇ · F(t). (4.12) Substituting (4.1), (4.2) and eliminating g by using of (4.5), (4.12) yields ρ0ψt(t) ≤ d dt 1 2 { a[∆u(t)]2 + b[∇ut(t)]2 + ρ0c Θ0 ϑ2(t) + τ kΘ0 q2(t) } + 1 kΘ0 q2(t), (4.13) whence we can assume ρ0ψ(∇ut,∆u, ϑ,q) ≤ 1 2 { a[∆u(t)]2 + b[∇ut(t)]2 + ρ0c Θ0 ϑ2(t) + τ kΘ0 q2(t) } , which satisfies (4.13) on account of (4.11)2. ISSN 1562-3076. Нелiнiйнi коливання, 2003, т . 6, N◦ 2 EXISTENCE, UNIQUENESS, AND ASYMPTOTIC STABILITY FOR A THERMOELASTIC PLATE 165 1. Lagnese J.E., Lions J.L. Modelling, analysis and control of thin plates. — Paris: Collectio RMA, Masson, 1988. 2. Lagnese J.E. The reachability problem for thermoelastic plates // Arch. Ration. Mech. and Anal. — 1990. — 112. — P. 223 – 267. 3. Kim J.U. On the energy decay of a linear thermoelastic bar and plate // SIAM J. Math. Anal. — 1992. — 23. —P. 889 – 899. 4. Shibata Y. On the exponential decay of the energy of a linear thermoelastic plate // Comput. Appl. Math. — 1994. — 13 . — P. 81 – 102. 5. Liu Z.Y., Renardy M. A note on the equation of a thermoelastic plate // Appl. Math. Lett. — 1995. — 8, № 3. — P. 1 – 6. 6. L. de Teresa, Zuazua E. Controllability of the linear system of thermoelastic plates // Adv. Different. Equat. — 1996. — 1, № 3. — P 369 – 402. 7. Muñoz Rivera J.E., Racke R. Large solution and smoothing properties for nonlinear thermoelastic systems // J. Different. Equat. — 1996. — 127, № 2. — P. 454 – 483. 8. Muñoz Rivera J.E., Scibata Y. A linear thermoelastic plate equation with Dirichlet boundary condition // Math. Met. Appl. Sci. — 1997. — 20, № 11. — P. 915 – 932. 9. Fabrizio M., Lazzari B., and Muñoz Rivera J.E. Asymptotic behaviour of a thermoelastic plate of weakly hyperbolic type // Different. and Integr. Equat. — 2000. — 13, № 10 – 12. — P. 1347 – 1370. 10. Fabrizio M., Lazzari B., and Morro A. On the thermodynamics of nonlocal electromagnetic systems (to appear). 11. Fabrizio M., Morro A. Mathematical problems in linear viscoelasticity // SIAM Stud. in Appl. Math. — 1992. 12. Cattaneo C. Sulla conduzione del calore // Atti Semin. mat. e fis. Univ. Modena. — 1948. — 3. — P. 83 – 101. 13. Gurtin M.E., Pipkin A.C. A general theory of heat conduction with finite wave speeds // Arch. Ration. Mech. and Anal. — 1968. — 31. — P. 113 – 126. 14. Coleman B.D., Fabrizio M., and Owen D.R. Il secondo suono nei cristalli: Termodinamica ed equazioni costi- tutive // Rend. Semin. mat. Univ. Padova. — 1982. — 68. — P. 207 – 227. Received 13.02.2003 ISSN 1562-3076. Нелiнiйнi коливання, 2003, т . 6, N◦ 2