On stability of a nonlinear pendulum

Методом Ляпунова знайдено достатню умову стiйкостi руху нелiнiйного маятника.

Gespeichert in:
Bibliographische Detailangaben
Datum:2003
1. Verfasser: Kengne, E.
Format: Artikel
Sprache:English
Veröffentlicht: Інститут математики НАН України 2003
Schriftenreihe:Нелінійні коливання
Online Zugang:http://dspace.nbuv.gov.ua/handle/123456789/176933
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:On stability of a nonlinear pendulum / E. Kengne // Нелінійні коливання. — 2002. — Т. 5, № 4. — С. 191-196. — Бібліогр.: 16 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-176933
record_format dspace
spelling irk-123456789-1769332021-02-11T01:29:03Z On stability of a nonlinear pendulum Kengne, E. Методом Ляпунова знайдено достатню умову стiйкостi руху нелiнiйного маятника. By means of Liapounov’s method, we establish a sufficient condition for stability of a nonlinear pendulum. 2003 Article On stability of a nonlinear pendulum / E. Kengne // Нелінійні коливання. — 2002. — Т. 5, № 4. — С. 191-196. — Бібліогр.: 16 назв. — англ. 1562-3076 http://dspace.nbuv.gov.ua/handle/123456789/176933 517.929.51 en Нелінійні коливання Інститут математики НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description Методом Ляпунова знайдено достатню умову стiйкостi руху нелiнiйного маятника.
format Article
author Kengne, E.
spellingShingle Kengne, E.
On stability of a nonlinear pendulum
Нелінійні коливання
author_facet Kengne, E.
author_sort Kengne, E.
title On stability of a nonlinear pendulum
title_short On stability of a nonlinear pendulum
title_full On stability of a nonlinear pendulum
title_fullStr On stability of a nonlinear pendulum
title_full_unstemmed On stability of a nonlinear pendulum
title_sort on stability of a nonlinear pendulum
publisher Інститут математики НАН України
publishDate 2003
url http://dspace.nbuv.gov.ua/handle/123456789/176933
citation_txt On stability of a nonlinear pendulum / E. Kengne // Нелінійні коливання. — 2002. — Т. 5, № 4. — С. 191-196. — Бібліогр.: 16 назв. — англ.
series Нелінійні коливання
work_keys_str_mv AT kengnee onstabilityofanonlinearpendulum
first_indexed 2025-07-15T14:53:11Z
last_indexed 2025-07-15T14:53:11Z
_version_ 1837725061320015872
fulltext UDC 517.929.51 ON STABILITY OF A NONLINEAR PENDULUM ПРО СТIЙКIСТЬ НЕЛIНIЙНОГО МАЯТНИКА E. Kengne Univ. Dschang P.O. Box 173, Dschang, Cameroon e-mail: ekengne6@yahoo.fr. By means of Liapounov’s method, we establish a sufficient condition for stability of a nonlinear pendulum. Методом Ляпунова знайдено достатню умову стiйкостi руху нелiнiйного маятника. 1. Introduction. Various interesting dynamical processes described by ordinary differential equations with many-dimensional rapid and slow variables have been studied by several authors [1 – 4]. Using the methods of works [5 – 8], Matviitchuk [9, 10] established and proved sufficient criteria of stability for the class of the mentioned dynamical processes. The purpose of this paper is to establish by the means of Liapounov’s method [11] a suffici- ent criterion for stability of a nonlinear pendulum. In Section 2, we obtain a differential system for oscillations of a nonlinear pendulum. The obtained system is a dynamic system with two rapid variables and one slow variable. In Section 3, we find the interval of stability of nonlinear pendulum described in Section 2. 2. Mathematical considerations. Throughout this paper we use the following notations: g is the acceleration of gravity; α the angular deviation from vertical; x(τ) the slowly variation of the length of the thread; τ = µt, where µ is a small positive quantity [2]. We assume that the length of the thread changes not by means of external forces, but by means of the self energy of the system, that is, the rate of change of the length of the thread depends only on α, α̇ and x.We also assume that the rate of the plastic deformation of the thread is very small and proportional to the tension of the thread, that is, ẋ = λµP, where P is the tension of the thread and λµ a small coefficient of deformation. If we denote by x0 the initial length of the thread then we can write x(τ) = x0 + ξ(τ), with 0 ≤ ξ ≤ K − x0, where K is a positive constant. The oscillations of such a pendulum are governed by the dynamic system [1] dα dt = p m(x0 + ξ)2 , dp dt = −mg(x0 + ξ)α, dξ dt = λµ [ mg cosα+ p2 m(x0 + ξ)3 ] , (1) c© E. Kengne, 2003 ISSN 1562-3076. Нелiнiйнi коливання, 2003, т . 6, N◦ 2 191 192 E. KENGNE defined in the region D = {α, ξ, p, µ, t : − π < α < π, 0 ≤ ξ ≤ K − x0, − p0 ≤ p ≤ p0, p0 = const > 0, 0 < µ < µ0, µ0 = cosnt > 0, 0 ≤ t ≤ µ−1 } . A pendulum whose oscillations are governed by system (1) is called a nonlinear pendulum. By setting ε = λµ, system (1) under the transformation t = t/ε is reduced to the following system with a small positive parameter along the two first derivatives: ε dα dt = p m(x0 + ξ)2 , ε dp dt = −mg(x0 + ξ)α, dξ dt = mg cosα+ p2 m(x0 + ξ)3 . (2) At every point (α, p, ξ) of the phase space (or the region where system (2) is defined) system (2) defines the vector of the phase velocity v(α, p, ξ) = ( 1 ε p m(x0 + ξ)2 , −mg(x0 + ξ)α ε ,mg cosα+ p2 m(x0 + ξ)3 ) . (3) As it is seen, the third component of the phase velocity (3) possesses a finite value, and, generally speaking, the two first components are infinitely large. Therefore for the phase portrait of system (2) we notice the presence of rapid movements and slow movements. Nevertheless the rapid movements occur far from the region [12] Γ = {α, p, ξ : α = 0, p = 0, 0 ≤ ξ ≤ K − x0} almost in parallel to the plane αp, and the slow movements occur near the region Γ. System ε dα dt = p m(x0 + ξ)2 , ε dp dt = −mg(x0 + ξ)α in which ξ is considered as a parameter is called the system of rapid movements, corresponding to system (2), and the variables α and p are called rapid variables [12] of system (2). The variable ξ is called the slow variable [12] of system (2). Therefore, (1) is a dynamic system with many- dimensional rapid and slow variables (two rapid variables, α and p, and one slow variable, ξ). Because f1(α, p, ξ) = p m(x0 + ξ)2 , f2(α, p, ξ) = −mg(x0 + ξ)α and f3(α, p, ξ) = mg cosα+ p2 m(x0 + ξ)3 ISSN 1562-3076. Нелiнiйнi коливання, 2003, т . 6, N◦ 2 ON STABILITY OF A NONLINEAR PENDULUM 193 are continuous functions in Ω̃ = {−π < α < π, 0 ≤ ξ ≤ K−x0,−p0 ≤ p ≤ p0, p0 = const > > 0}, we have the following conclusion [12 – 14]: if ϕ(t, ε) = (α(t, ε), p(t, ε), ξ(t, ξ)) is a solution of system (1) (with ε = λµ) verifying the initial condition ϕ(0, ε) = ϕ0 and ϕ0(t) a solution of the singular system dα dt = p m(x0 + ξ)2 , dp dt = −mg(x0 + ξ)α, dξ dt = 0 (4) (this system is obtained from (1) by setting µ = 0) corresponding to system (1), defined in the region 0 ≤ t ≤ T and verifying the same initial condition ϕ0(0) = ϕ0, then ϕ(t, ε) = ϕ0(t) +R0(t, ε), where R0(t, ε) tends uniformly to zero with respect to t ∈ [0, T ] as ε → 0. If we consider α and α̇ to be very small, then cosα ≈ 1−α 2 2 . Therefore, system (1) relatively coincides with the nonlinear system dα dt = p m(x0 + ξ)2 , dp dt = −mg(x0 + ξ)α, dξ dt = λµ [ mg − 1 2 mgα2 + p2 m(x0 + ξ)3 ] . (5) Systems (4) and (5) play an important role in the investigation of the stability of nonlinear pendulum whose oscillations are governed by system (1). 3. Stability of nonlinear pendulum. The solutions of singular system (4) read α(t) = a cos(ωt+ β), p(t) = −ma(x0 + ξ)2ω sin(ωt+ β), ξ(t) = const, (6) where a is the amplitude of oscillations of the pendulum; ω = √ g/(x0 + ξ), β = const. With the help of the singular solution (6), we write system (1) in the form [15] dξ dt = µ̃Z(t, ξ, ϕ(t, ξ, a, β)) +R1(t, ξ, ϕ(t, ξ, a, β)), dα dt = µ̃Z1(t, ξ, ϕ(t, ξ, a, β)) +R2(t, ξ, ϕ(t, ξ, a, β)), dp dt = µ̃Z2(t, ξ, ϕ(t, ξ, a, β)) +R3(t, ξ, ϕ(t, ξ, a, β)), (7) ISSN 1562-3076. Нелiнiйнi коливання, 2003, т . 6, N◦ 2 194 E. KENGNE where ϕ(t, ξ, a, β) = (a cos(ωt+ β),−ma(x0 + ξ)2ω sin(ωt+ β)), Z(t, ξ, ϕ(t, ξ, a, β)) = λm{g cos[a cos(ωt+ β)] + (x0 + ξ)a2ω2 sin2(ωt+ β)}, Z1(t, ξ, ϕ(t, ξ, a, β)) = −3a 2 √ x0 + ξ sin2(ωt+ β)Z(t, ξ, ϕ(t, ξ, a, β)), Z2(t, ξ, ϕ(t, ξ, a, β)) = ωt− 3 2 sin(ωt+ β) 2(x0 + ξ) Z(t, ξ, ϕ(t, ξ, a, β)), R1(t, ξ, ϕ(t, ξ, a, β)) = λµ ( mg cosα+ p2 m(x0 + ξ)3 ) − µ̃Z(t, ξ, ϕ(t, ξ, a, β)), R2(t, ξ, ϕ(t, ξ, a, β)) = p m(x0 + ξ)2 + 3aµ 2(x0 + ξ)2 sin2(ωt+ β)Z(t, ξ, ϕ(t, ξ, a, β)), R3(t, ξ, ϕ(t, ξ, a, β)) = − { mg(x0 + ξ)α+ µ̃ 2(x0 + ξ) ( ωt− 3 sin(ωt+ β) 2 ) × ×Z(t, ξ, ϕ(t, ξ, a, β)) } . Let us group, together with system dξ dt = µ̃Z(t, ξ, ϕ(t, ξ, a, β)), dα dt = µ̃Z1(t, ξ, ϕ(t, ξ, a, β)), dp dt = µ̃Z2(t, ξ, ϕ(t, ξ, a, β)), (8) Liapounov’s function V (t, ξ, α, p, µ̃) = e− sin(e−t) [ 2−1ξ2 + µ̃(sin2 α+ sin2 p) ] in the domain D for which the derivative along the system (6), under the conditions |µ− µ̃| < µ1, µ1 ≤ λmK γ − µ̃K0 g +Kp3 0 , K0 = mK[g(π + 3) +Kp2 0], γ = const > 0, ISSN 1562-3076. Нелiнiйнi коливання, 2003, т . 6, N◦ 2 ON STABILITY OF A NONLINEAR PENDULUM 195 has the estimate dV dt = ∂V ∂t + ∂V ∂ξ dξ dt + ∂V ∂α dα dt + ∂V ∂p dp dt ≤ ≤ e−t cos(e−t)V (t, ξ, α, p, µ̃) + e− sin(e−t)(µK1 + γ), K1 = λmg(2 + a2) [ K + (2x0)−1 (2 √ g + 5µ̃) ] + p0 mx0 . That is, dV dt ≤ e−t cos(e−t)V (t, ξ, α, p, µ̃) + e− sin(e−t)(µK1 + γ). (9) Let s(t, µ̃) be a function defined by s(t, µ̃) = t∫ t0 esin e−t0−sin e−s(µ̃K1 + γ)ds. Let us consider the following Cauchy problem for the congruence equation [9, 10, 16]: dy dt = e−t cos(e−t)[y + s(t, µ̃)], (10) y(t0) = y0 ≥ V0 = V (t0, ξ(t0), α(t0), p(t0), µ̃). Cauchy problem (10) possesses a bounded and continuous solution ỹ(t) = esin e−t0−sin e−t [y0 + (µ̃K1 + γ)(t− t0)]− s(t, µ̃). Using Theorem 9.5 of work [8] on the differential inequalities and by virtue of the inequality (9), the following estimate holds for the Liapounov’s function (8) along the solution of system (1) for the values of t ∈ [ 0, µ−1 ] ∩ [ 0, µ̃−1 ] : V (t, ξ(t), α(t), p(t), µ̃) ≤ ỹ(t) + s(t, µ̃). That is, V (t, ξ(t), α(t), p(t), µ̃) ≤ esin e−t0−sin e−t [y0 + (µ̃K1 + γ)(t− t0)] . By virtue of the fact that s(t, µ̃) is a bounded quantity on [ 0, µ−1 ] ∩ [ 0, µ̃−1 ] and y(t) → t→+∞ y0e sin e−t0 , ISSN 1562-3076. Нелiнiйнi коливання, 2003, т . 6, N◦ 2 196 E. KENGNE we finally have for t ∈ [ 0, µ−1 ] ∩ [ 0, µ̃−1 ] the estimate 0 ≤ V (t, ξ(t), α(t), p(t), µ̃) ≤ esin e−t0 [ y0 + (µ̃K1 + γ) ( 1 µ̆ − t0 )] , where µ̆ = max(µ, µ̃). Consequently, the processes (1), subordinate to condition (5), is stable [10] on the segment I = [ 0, µ−1 ] ∩ [ 0, µ̃−1 ] . In other words, the nonlinear pendulum described in Section 2 is stable on the region I = [ 0, µ−1 ] ∩ [ 0, µ̃−1 ] . 1. Bogolioubov N.N., Zubarev D.N. Method of asymptotic approximations for systems with revolutionary phase and its application to the motion of charged particles in the magnetic field // Ukr. Math. J. — 1955. — 7, № 1. — P. 5 – 17. 2. Volossof V.M. Averaging in the systems of ordinary differential equations // Ibid. — 1962. — 17, № 6. — P. 3 – 126. 3. Alfven H. On the motion of charged particle in a magnetic field // Ark. mat., astron. och fys. — 1940. — 37A, № 22. — P. 3 – 10. 4. Mitchenko E. F., Pontriaguin L.S. Relaxation oscillations and differential equations containing a small para- meter with the senior derivative // Calcutta Math. Soc. The Golden Jubilee Commemoration Volume (1958 – 1959). — Calcutta, 1963. — P. 605 – 626. 5. Kamke E. Differentialgleichungen reeler Funktionen. — Leipzig: Akad. Verlagsgesellschaft, 1930. — 365 S. 6. Lakshmikantham V., Leela S. Differential and integral inequalities. Theory and applications. — New York; London: Acad. Press, 1969. — Vols 1, 2. — 569 p. 7. Rao M.R.M. A note on an integral inequality // J. Indian Math. Soc. — 1963. — 24, № 2. — P. 69 – 71. 8. Sharski J. Differential inequalities. — Warzawa: Pánst. wyd-wo nauk., 1967. — 256 p. 9. Matviitchuk K.S. Remarks on the method of comparison for systems of differential equations with rapidly rotating phase // Ukr. Math. J. — 1982. — 34, № 4. — P. 456 – 462. 10. Matviitchuk K.S. On the question of the stability of systems connecting solids with the shock elements // Ibid. — 1983. — 19, № 5. — P. 100 – 106. 11. Pouch N., Abetsc P., and Lalia M. Direct method of Liapounov in the theory of stability. — Moscow, 1980. — 300 p. 12. Mitchenko E.F., Rosov N.K. Differential equations with a small parameter and relaxation oscillations. — Moscow, 1975. — 148 p. 13. Lefschetz S. Geometrical theory of differential equations. — Moscow, 1961. 14. Andronov A.A., Vitt A.A., and Haikin S.E. Theory of vibrations. — Moscow: Fizmatgiz, 1959. 15. Filatov A.N. Averaging methods in differential and integro-differential equations. — Tashkient: Fan, 1971. — 279 p. 16. Belmann R., Cook K.L. Difference differential equations. — Moscow: Mir, 1967. — 548 p. Received 05.07.2002 ISSN 1562-3076. Нелiнiйнi коливання, 2003, т . 6, N◦ 2