Modified Ginzburg-Landau equation and Benjamin-Feir instability
In this paper the modulated wave train in nonlinear monoinductance LC circuit is studied. Using the method of multiple scales in general form, we establish that the evolution of nonlinear excitations is governed by what we called the Modified Ginzburg – Landau Equation (MGLE). Benjamin – Feir inst...
Збережено в:
Дата: | 2003 |
---|---|
Автор: | |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут математики НАН України
2003
|
Назва видання: | Нелінійні коливання |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/176944 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Modified Ginzburg-Landau equation and Benjamin-Feir instability / E. Kengne // Нелінійні коливання. — 2002. — Т. 5, № 4. — С. 346-356. — Бібліогр.: 28 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-176944 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1769442021-02-10T01:25:51Z Modified Ginzburg-Landau equation and Benjamin-Feir instability Kengne, E. In this paper the modulated wave train in nonlinear monoinductance LC circuit is studied. Using the method of multiple scales in general form, we establish that the evolution of nonlinear excitations is governed by what we called the Modified Ginzburg – Landau Equation (MGLE). Benjamin – Feir instability for the MGLE is analyzed Вивчається проходження модульованих хвиль у нелiнiйному моноiндуктивному LC-ланцюзi. З використанням методу кратних шкал отримано, що еволюцiя нелiнiйних збуджень описується за допомогою рiвняння, яке ми називаємо модифiкованим рiвнянням Гiнзбурга – Ландау (МРГЛ). Аналiзується стабiльнiсть МРГЛ у сенсi Бенджамiна – Фейра. 2003 Article Modified Ginzburg-Landau equation and Benjamin-Feir instability / E. Kengne // Нелінійні коливання. — 2002. — Т. 5, № 4. — С. 346-356. — Бібліогр.: 28 назв. — англ. 1562-3076 http://dspace.nbuv.gov.ua/handle/123456789/176944 517.9 en Нелінійні коливання Інститут математики НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
description |
In this paper the modulated wave train in nonlinear monoinductance LC circuit is studied. Using the
method of multiple scales in general form, we establish that the evolution of nonlinear excitations is
governed by what we called the Modified Ginzburg – Landau Equation (MGLE). Benjamin – Feir instability for the MGLE is analyzed |
format |
Article |
author |
Kengne, E. |
spellingShingle |
Kengne, E. Modified Ginzburg-Landau equation and Benjamin-Feir instability Нелінійні коливання |
author_facet |
Kengne, E. |
author_sort |
Kengne, E. |
title |
Modified Ginzburg-Landau equation and Benjamin-Feir instability |
title_short |
Modified Ginzburg-Landau equation and Benjamin-Feir instability |
title_full |
Modified Ginzburg-Landau equation and Benjamin-Feir instability |
title_fullStr |
Modified Ginzburg-Landau equation and Benjamin-Feir instability |
title_full_unstemmed |
Modified Ginzburg-Landau equation and Benjamin-Feir instability |
title_sort |
modified ginzburg-landau equation and benjamin-feir instability |
publisher |
Інститут математики НАН України |
publishDate |
2003 |
url |
http://dspace.nbuv.gov.ua/handle/123456789/176944 |
citation_txt |
Modified Ginzburg-Landau equation and Benjamin-Feir instability / E. Kengne // Нелінійні коливання. — 2002. — Т. 5, № 4. — С. 346-356. — Бібліогр.: 28 назв. — англ. |
series |
Нелінійні коливання |
work_keys_str_mv |
AT kengnee modifiedginzburglandauequationandbenjaminfeirinstability |
first_indexed |
2025-07-15T14:53:53Z |
last_indexed |
2025-07-15T14:53:53Z |
_version_ |
1837725105692606464 |
fulltext |
UDC 517.9
MODIFIED GINZBURG – LANDAU EQUATION
AND BENJAMIN – FEIR INSTABILITY
МОДИФIКОВАНЕ РIВНЯННЯ ГIНЗБУРГА – ЛАНДАУ
I НЕСТАБIЛЬНIСТЬ У СЕНСI БЕНДЖАМIНА – ФЕЙРА
E. Kengne
Univ. Dschang
P.O. Box 173, Dschang, Cameroon
e-mail: ekengne6@yahoo.fr
In this paper the modulated wave train in nonlinear monoinductance LC circuit is studied. Using the
method of multiple scales in general form, we establish that the evolution of nonlinear excitations is
governed by what we called the Modified Ginzburg – Landau Equation (MGLE). Benjamin – Feir instabi-
lity for the MGLE is analyzed.
Вивчається проходження модульованих хвиль у нелiнiйному моноiндуктивному LC-ланцюзi. З
використанням методу кратних шкал отримано, що еволюцiя нелiнiйних збуджень описується
за допомогою рiвняння, яке ми називаємо модифiкованим рiвнянням Гiнзбурга – Ландау (МРГЛ).
Аналiзується стабiльнiсть МРГЛ у сенсi Бенджамiна – Фейра.
1. Introduction. Considering nonlinear transmission line as a convenient tool to examine wave
propagations in dispersive media, various physical systems have been studied [1 – 3]. Since the
pioneering works of Hirota and Suzuki [4, 5] in order to stimulate the integrable Toda lattice
[6] by electric circuits there has been an increased interest in the propagation of wave trains
in nonlinear-dispersive transmission lines, involving the phenomena such as Benjamin – Feir
instability [7 – 9], the formation of stationary localized waves, that is, the envelope solitons [10,
11] and the dark solitons [12, 13].
The Benjamin – Feir (or, as it is sometimes called, the modulational) instability is widespread
and plays an important role in various nonlinear wave phenomena. Simply put, if dispersion
and nonlinearity act against each other, monochromatic wave trains do not wish to remain
monochromatic. The sidebands of the carrier wave can draw on its energy via a resonance
mechanism with the result that the envelope becomes modulated. In one space dimension, this
envelope modulation continues to grow until the soliton shape is reached. At this point, nonli-
nearity and dispersion are in exact balance and no further distortion occurs [14, 15].
It is well known that the self-modulation of one space dimension waves in nonlinear di-
spersive systems can be described by the so-called Ginzburg – Landau equation (GLE) [16 –
18],
iut + Puxx +Q |u|2 u = iγ, (1.1)
where the subscripts t and x denote the partial differentiation with respect to t and x, respecti-
vely. If PQ < 0, a plane wave in this system is stable for the modulation and, otherwise, is
unstable. Especially in the later case there exist special families of solutions, which are called
envelope solitons and show various interesting phenomena [19, 20].
c© E. Kengne, 2003
346 ISSN 1562-3076. Нелiнiйнi коливання, 2003, т . 6, N◦ 3
MODIFIED GINZBURG – LANDAU EQUATION AND BENJAMIN – FEIR INSTABILITY 347
Fig. 1. Asection for a distributed nonlinear-dispersive
transmission line.
Recently, there has been a progress towards a mathematical understanding of equation (1.1).
Kirchgassner [21] and Mielke [22 – 24] restrict attention to steady-state equations and view the
single unbounded spatial direction as an evolution variable.
In this paper, we give a rigorous derivation of the full time-dependent Modified Ginzburg –
Landau Equation (MGLE). The Benjamin – Feir (modulational) instability for the obtained
MGLE is investigated.
2. Basic equations. In this section we derive a nonlinear wave equation for the electromag-
netic wave propagation in a nonlinear-dispersive transmission line shown in Fig. 1. By using the
method of multiple scales, we derive a MGLE.
2.1. The model equations. In the considered transmission line, Fig. 1, CN is a nonlinear
capacitor such as a ”VARICAP” or a reverse-biased p − n junction diode, the capacitance of
which depends on the voltage applied across it.
By applying the Kirchhoff’s voltage theorem and the current theorem we obtain
∂I
∂x
+
∂ρ(V )
∂t
= 0,
∂V
∂x
+ L
∂I1
∂t
= 0,
∂2V
∂x∂t
+
1
Cs
(I − I1) = 0 (2.1)
where the current through the nonlinear capacitor is given by ∂ρ(V )/∂t. From equations (2.1)
we can eliminate I and I1 and write
Cs
∂4V
∂x2∂t2
+
1
L
∂2V
∂x2
− ∂2ρ
∂t2
= 0. (2.2)
With no loss of generality, we may regard ρ(0) = 0 and expand ρ(V ) to obtain ρ(V ) ≈ ρ′(0)V +
+
ρ′′(0)
2
V 2. For bounded solutions, we must have ρ′(0) ≥ 0. Hence we have
ρ(V ) ≈ C0
(
V − β′V 2
)
= C0V − CNV 2. (2.3)
Substituting (2.3) into (2.2), we obtain the following partial differential equation for the voltages:
C0
∂2V
∂t2
− 1
L
∂2V
∂x2
− CS
∂4V
∂x2∂t2
− CN
∂2V 2
∂t2
= 0. (2.4)
ISSN 1562-3076. Нелiнiйнi коливання, 2003, т . 6, N◦ 3
348 E. KENGNE
2.2. Derivation of the generalized complex Ginzburg – Landau equation. If we introduce
the notations
α = −1/L, β = −CN , λ = CS ,
equation (2.4) takes the form
C0
∂2V
∂t2
+ α
∂2V
∂x2
− Cs
∂4V
∂x2∂t2
+ β
∂2V 2
∂t2
= 0. (2.5)
We follow Taniuti and Yajima [25, 26] and seek a first-order uniform expansion by using the
method of multiple scales in the form
V = ε1/2v11 exp [i(kX0 − ωT0)] + εV22 exp [2i(kX0 − ωT0)] +
+ ε3/2v33 exp [3i(kX0 − ωT0)] + ε2 [v42 exp [2i(kX0 − ωT0)] +
+ v44 exp [4i(kX0 − ωT0)]] + cc+ . . . , (2.6)
where cc stands for the complex conjugate, ε is a small, dimensionless parameter related to the
amplitudes (0 < ε � 1), vij = vij(X1, T1, T2), Tn = εnt, and Xn = εnx.
Substituting (2.6) into (2.5) and equating coefficients of like powers of ε and exp [iθ] (here
θ = kX0 − ωT0), we obtain the following:
for order ε1/2, exp [iθ], [
C0ω
2 + αk2 + λk2ω2
]
v11 = 0, (2.7)
for order ε3/2, exp [iθ],
−2iω
[
C0 + λk2
] ∂v11
∂T1
+ 2ik
[
α+ λω2
] ∂v11
∂X1
− 2βω2v∗11v22 = 0, (2.8)
for order ε, exp [2iθ],
−4
(
C0ω
2 + αk2 + 4λk2ω2
)
− 4ω2βv2
11 = 0, (2.9)
for order ε3/2, exp [3iθ],
−9
(
C0ω
2 + αk2 + 9λk2ω2
)
− 18ω2βv11v22 = 0, (2.10)
for order ε2, exp [2iθ],[
−4
(
C0ω
2 + αk2 + 4λk2ω2
)]
v42 − 8βω2v∗11v33 = 0, (2.11)
for order ε2, exp [4iθ],[
−16
(
C0ω
2 + αk2 + 16λk2ω2
)]
v44 − βω2
[
32v11v33 + 16v2
22
]
= 0, (2.12)
ISSN 1562-3076. Нелiнiйнi коливання, 2003, т . 6, N◦ 3
MODIFIED GINZBURG – LANDAU EQUATION AND BENJAMIN – FEIR INSTABILITY 349
Fig. 2. The dispersion curve for the linearized version of the
above transmission line.
for order ε5/2, exp [iθ],
C0
[
∂2v11
∂T 2
1
− 2iω
∂v11
∂T2
]
+ α
∂2v11
∂X2
1
− λ
[
−k2∂
2v11
∂T 2
1
+ 2iωk2∂v11
∂T2
+ 4kω
∂2v11
∂T1∂X1
−
− ω2∂
2v11
∂X2
1
]
+ β
[
−4iω
∂v∗11v22
∂T1
− 2ω2v∗11v42 − 2ω2v∗22v33
]
= 0. (2.13)
For the nontrivial solution we must have v11 6= 0. Then (2.7) gives
C0ω
2 + αk2 + λk2ω2 = 0. (2.14)
Equation (2.14) is the dispersion relation illustrated in Fig. 2 for the line parameters
Cs = 5C0 = 1200pF, L = 14µH, CN = 38, 4pF, 0 ≤ k ≤ 1, 58, ε = 0, 1. (2.15)
Using the dispersion relation (2.14), equations (2.9) – (2.12) give
v22 = − β
3λk2
v2
11, (2.16)
v33 =
β2
12λ2k4
v3
11, (2.17)
v42 = − β3
108λ2k8ω2
|v11|2 v2
11, (2.18)
ISSN 1562-3076. Нелiнiйнi коливання, 2003, т . 6, N◦ 3
350 E. KENGNE
v44 = − β3
54λ3k6
v4
11, (2.19)
respectively.
Solving for ∂v11/∂T1, from (2.9) and (2.16) we obtain
∂v11
∂T1
=
C0
α
ω3
k3
∂v11
∂X1
− iβω3
αk2
v∗11v22,
where Vg = −C0
α
(ω
k
)3
=
C0
√
−α
(C0 + λk2)3/2
is the group velocity. Hence,
∂2v11
∂T 2
1
=
C2
0
α2
ω6
k6
∂2v11
∂X2
1
− C0
iβω6
α2k5
∂
∂X1
(v∗11v22)− iβω3
αk2
∂
∂T1
(v∗11v22) ,
(2.20)
∂2v11
∂T1∂X1
=
C0
α
ω3
k3
∂2v11
∂X2
1
− iβω3
αk2
∂
∂X1
(v∗11v22) .
Combining (2.20) and (2.13), and using (2.16) – (2.18), we obtain, in terms of the original vari-
ables t and x,
i
∂v11
∂t
+ P
∂2v11
∂x2
+ iQ1
∂
∂t
(
|v11|2 v11
)
+ iQ2
∂
∂x
(
|v11|2 v11
)
+Q3 |v11|4 v11 = 0, (2.21)
where
P = P (k) = −1
2
ω′′ = − 3C0λ
√
−αk
2 (C0 + λk2)5/2
, (2.22)
Q1 = Q1(k) = − β3ε
2λk2 (C0 + λk2)
, (2.23)
Q2 = Q2(k) =
β2ε
(
C0 + 4λk2
)
3λk3 (C0 + λk2)2 , (2.24)
Q3 = Q3(k) = − β4ε2
√
−α
12λ3k5 (C0 + λk2)3/2
. (2.25)
Using the transformation
ξ = x−Q2Q
−1
1 t, τ = t, v11(ξ, τ) = u(ξ, τ) exp
[
iQ2P
−1Q−1
1 ξ/2
]
, (2.26)
we write (2.21) in the final form
i
∂u
∂τ
+ P
∂2u
∂ξ2
+ iQ1
∂
∂τ
(
|u|2 u
)
− γu+Q3 |v11|4 v11 = 0, (2.27)
ISSN 1562-3076. Нелiнiйнi коливання, 2003, т . 6, N◦ 3
MODIFIED GINZBURG – LANDAU EQUATION AND BENJAMIN – FEIR INSTABILITY 351
where γ = −Q2
2P
−1Q−2
1 /4.
Thus the resulting equation (2.27) that describes the evolution of a wavepacket is a complex
envelope equation that involves higher order nonlinearities. We call this equation the MGLE.
For the line parameters (2.15) we plot the following coefficient of the spatial dispersion
curve.
Fig. 3. The coefficient of the spatial dispersion curve.
It is seen from Fig. 3 that the coefficient of the spatial dispersion is always negative when 0 ≤
≤ k ≤ 1, 58. In the next section we study the Benjamin – Feir instability of the monochromatic
wave solutions.
3. The Benjamin – Feir instability. To study the Benjamin – Feir instability of the monochro-
matic wave solutions, we first express u in the polar form
u(ξ, τ) = a(ξ, τ) exp [ib(ξ, τ)] . (3.1)
Substituting (3.1) into (2.27) and separating imaginary and real parts we obtain
(
1 + 3Q1a
2
) ∂a
∂τ
+ P
(
2
∂a
∂ξ
∂b
∂ξ
+ a
∂2b
∂ξ2
)
= 0, (3.2)
(
a+Q1a
3
) ∂b
∂τ
+ P
(
a
(
∂b
∂ξ
)2
− ∂2a
∂ξ2
)
+ γa−Q3a
5 = 0. (3.3)
If the wave has a fixed, single wavenumber, then P = −1
2
d2ω
dk2
= 0 and system (3.2), (3.3)
reduces to
(
1 + 3Q1a
2
) ∂a
∂τ
= 0,
(
a+Q1a
3
) ∂b
∂τ
+ γa−Q3a
5 = 0
ISSN 1562-3076. Нелiнiйнi коливання, 2003, т . 6, N◦ 3
352 E. KENGNE
whose solutions are
a = a0, b =
Q3a
4
0 − γ
1 +Q1a2
0
τ + const, (3.4)
where a0 is constant.
It natural to define the local wavenumber k as the ξ derivative of the total phase and the
local frequency as the negative of the τ derivative of the total phase θ = k0ξ − ω0τ + b(ξ, τ),
k = k0 + bξ, ω = ω0 − bτ .
Note that
kτ + ωξ = bξτ − bτξ = 0, (3.5)
which expresses the conservation of the number of waves. We will write the change in the
wavenumber bξ as K. Now equation (3.2) gives
∂
∂τ
(
2a2 + 3Q1a
4
)
+ 4P
∂
ξ
(
a2K
)
= 0, (3.6)
which is an equation of conservation of the wave action. On the other hand, equation (3.3) gives
a
(
1 +Q1a
2
)
bτ + P
(
aK2 − aξξ
)
+ γa−Q3a
5 = 0,
which when differentiating with respect to ξ gives
a2(1 +Q1a
2)2Kτ + aξ
(
1 + 3Q1a
2
) [
Q3a
5 − γa+ P
(
aξξ − aK2
)]
+
+ Pa
(
1 +Q1a
2
) (
aξK
2 + 2aKKξ − aξξξ
)
+ a
(
1 +Q1a
2
) (
γ − 5Q3a
4
)
aξ = 0. (3.7)
Equation (3.7) is a relation for conservation of waves, since
ω = ω0 +
γ + P
(
K2 −
aξξ
a
)
−Q3a
4
1 +Q3a2
.
Next, the monochromatic wave solution (3.4) means that
k = k0, ω = ω0 −
Q3a
4
0 − γ
1 +Q1a2
0
.
This is the Stokes wave. Test it linear stability by setting
a = a0 + ã, K = K̃, (3.8)
ISSN 1562-3076. Нелiнiйнi коливання, 2003, т . 6, N◦ 3
MODIFIED GINZBURG – LANDAU EQUATION AND BENJAMIN – FEIR INSTABILITY 353
where ã is assumed to be infinitesimal. Substituting (3.8) into (3.6) and (3.7) and keeping only
linear terms in perturbation quantities, we obtain
ãτ = − Pa0
1 + 3Q1a2
0
K̃ξ,
Kτ =
P
a0
(
1 +Q1a2
0
) ãξξξ +
2
(
Q1Q3a
4
0 + 2Q3a
2
0 +Q1γ
)
a2
0
a0
(
1 +Q1a2
0
)2 ãξ,
or
ãττ = −
P
(
1 +Q1a
2
0
)−2(
1 + 3Q1a2
0
) [
P
(
1 +Q1a
2
0
)
ãξξξξ + 2a2
0
(
Q1Q3a
4
0 + 2Q3a
2
0 +Q1γ
)
ãξξ
]
. (3.9)
Therefor if ã ∝ exp [ilξ + Ωτ ] ,
Ω2 = −
(
1 +Q1a
2
0
)−2
k2(
1 + 3Q1a2
0
) [(
1 +Q1a
2
0
)
P 2l2 − 2a2
0P
(
Q1Q3a
4
0 + 2Q3a
2
0 +Q1γ
)]
. (3.10)
Because β = −CN < 0, it follows from (2.22) – (2.25) that P (k) < 0, Q1(k) > 0,
Q3(k) < 0, and γ = −Q2
2P
−1Q−2
1 /4 > 0. Therefore we have the following results.
Theorem 3.1. If
Q1Q3a
4
0 + 2Q3a
2
0 +Q1γ < 0, (3.11)
the monochromatic wave solution (3.4) will be unstable to long waves in the range
0 < l2 <
2a2
0
(
Q1Q3a
4
0 + 2Q3a
2
0 +Q1γ
)
P
(
1 +Q1a2
0
) . (3.12)
Inequality (3.11) is the Benjamin – Feir instability criterion to the MGLE in the electrical
monoinductance transmission line. This new result is different from the Lange and Newell cri-
terion for the Stokes wave [27, 28] by the presence of the amplitude a0 of the monochromatic
wave.
For the line parameters (2.15) we plotQ1Q3a
4
0 +2Q3a
2
0 +Q1γ as a function of the amplitude
a0 or/and a function of the wavenumber k.
ISSN 1562-3076. Нелiнiйнi коливання, 2003, т . 6, N◦ 3
354 E. KENGNE
Fig. 4. The dependence of Q1Q3a
4
0 + 2Q3a
2
0 +Q1γ
on a0 with k = 0, 1.
Fig. 5. The dependence of Q1Q3a
4
0 + 2Q3a
2
0 +Q1γ on k,
0, 09 ≤ k ≤ 0, 624, for a0 = 1000.
Fig. 4 shows that for the wavenumber k = 0, 1, condition (3.11) holds for all a0 > a0c '
' 0, 084. For these values of a0, the monochromatic wave solutions corresponding to the fi-
xed wavenumber k = 0, 1 are modulational unstable. All the monochromatic wave solutions
associated to k = 0, 1 with any amplitude a0 < a0c are stable.
It is seen from Figures 5, 6, and 7 that for any fixed wavenumber 0 < k < 0, 624, the
corresponding monochromatic wave solution with the amplitude a0 = 1000 is modulational
unstable, while any monochromatic wave solution corresponding to the wavenumber 0, 625 ≤
≤ k ≤ 1, 58 with the amplitude a0 = 1000 is modulational stable.
Figures 4 – 7 show that Q1Q3a
4
0 + 2Q3a
2
0 +Q1γ, as a function of k or/and a0, changes its sign
for particular value of k or/and a0.
ISSN 1562-3076. Нелiнiйнi коливання, 2003, т . 6, N◦ 3
MODIFIED GINZBURG – LANDAU EQUATION AND BENJAMIN – FEIR INSTABILITY 355
Рис. 6. The dependence of Q1Q3a
4
0 + 2Q3a
2
0 +Q1γ on k,
0, 624 < k ≤ 0, 625, for a0 = 1000.
Рис. 7. The dependence of Q1Q3a
4
0 + 2Q3a
2
0 +Q1γ on k,
0, 625 ≤ k ≤ 1, 58, for a0 = 1000.
4. Conclusion. In this paper monoinductance LC circuit is considered and envelope modulati-
on is reduced to the MGLE. Benjamin – Feir instability for the MGLE is analyzed. As far as
we know there have been no such Stokes wave analysis related to LC circuit. As in most cases,
the linear part of the modulation equation (the coefficient of the spatial dispersion) is fixed,
that is, P =
−1
2
d2ω
dk2
. We also have that Q1Q3a
4
0 + 2Q3a
2
0 + Q1γ < 0 is a necessary but not
sufficient condition for the instability. It should be noted that Q1Q3a
4
0 + 2Q3a
2
0 + Q1γ > 0 is a
sufficient condition for the stability. In fact, if this last condition is satisfied then for every real
l, Ω will always be pure imaginary and ã ∝ exp [ikξ + Ωτ ] will be bounded. In most cases the
criterion of the instability does not depend on the amplitude of the monochromatic wave. But
for our MGLE, the said criterion depends on the amplitude a0. This fact allows us to construct
an unstable monochromatic wave for a given wavenumber.
ISSN 1562-3076. Нелiнiйнi коливання, 2003, т . 6, N◦ 3
356 E. KENGNE
1. Scott A. Active and nonlinear wave propagation in electronics. — New York: Wiley-Intersci., 1970.
2. Solitons in action / Eds. K.E. Lonngren, A.C. Scott. — New York: Acad. Press, 1978.
3. Ostrovski L.A., Gorshkov K.A., andPapko V.V. Phys. scr. — 1979. — 20. — P. 357.
4. Hirota R., Suzuki K. Direct methods in soliton theory // J. Phys. Soc. Jap. — 1970. — 28. — P. 1366.
5. Hirota R., Suzuki K. Direct methods of finding exact solutions of nonlinear evolution equations // Backlund
Transformation: Proc. IECE. — 1973. — 61. — P. 1438.
6. Toda M. Theory of nonlinear Lattices // J. Phys. Soc. Jap. — 1967. — 22. — P. 413; 23. — P. 501.
7. Benjamin T.B., Feir J.F. The disintegration of wave trains on deep water // J. Fluid Mech. — 1967. — 27. —
P. 417 – 430.
8. Lake B.M., Yuen H.C., Rungaldier H., and Ferguson W.E. Nonlinear deep water waves: theory and experi-
ment // Ibid. — 1977. — 83. — P. 49 – 74.
9. Kengne E. Envelope modulational instability in a nonlinear dissipative transmission line // Nonlinear Osci-
llations. — 2002. — 5, № 1. — P. 20 – 29.
10. Kawahara T., Sakai J., and Kakutani T. Weak ion-acoustic shock waves // J. Phys. Jap. — 1970. — 29. —
P. 1068 – 1073.
11. Inoue H Y., Sahai J., and Kawata T. Nonlinear wave modulation in dispersive media // Trans. IECE Jap. E. —
1976. — 60. — P. 339.
12. Saito H., Muraya K., and Watanabe S. Nonlinear forced vibrations of a beam carrying concentrated mass
under gravity // J. Sound. and Vibr. — 1976. — 46. — P. 515 – 525.
13. Nayfeh A.H. Perturbation methods // Phys. scr. — 1985. — 31. — P. 415.
14. Whitham G.B. Linear and nonlinear waves. — New York: Wiley-Intersci., 1974.
15. Benney D.J., Roskes G.J. Wave instabilities // Stud. Appl. Math. — 1969. — 48 — P. 377 – 385.
16. Karpman V.I., Kadomtsev B.B. Nonlinear waves // Sov. Phys. Uspekhi. — 1971. — 14. — P. 40 – 60.
17. Karpman V.I., Krushkal E.M. Modulated waves in nonlinear dispersive media // Zh. Eksp. i Teor. Fiz. — 1968.
— 55. — P. 530.
18. Taniuti T. Reductive perturbation method and far fields of wave equations // Progr. Theor. Phys. Suppl. —
1974. — 55. — P. 1 – 35.
19. Asano N., Taniuti T., and Yajima N. Reductive perturbation method for nonlinear wave propagation in
inhomogeneous media. II // J. Phys. Soc. Jap. — 1970. — 29. — P. 209 – 214.
20. Yajima N., Asano N., and Taniuti T. Perturbation method for a nonlinear wave modulation // J. Math. Phys.
— 1969. — 10. — P. 2020 – 2024.
21. Kirchgassner K. Wave solutions of reversible systems and applications // J. Different. Equat. — 1982. — 45.
— P. 113 – 127.
22. Mielke A. A reductible principle for nonautonomous systems in infinite dimensional spaces // Ibid. — 1986.
— 65. — P. 68 – 88.
23. Mielke A. Steady flows of inviscid fluids under localized perturbations // Ibid. — P. 89 – 116.
24. Mielke A. Reduction of quasilinear elliptic equations in cylindrical domains with applications // Math. Meth.
Appl. Sci. — 1988. — 10. — P. 51 – 66.
25. Taniuti T., Yajima N. Perturbation method for nonlinear wave modulation. I // J. Math. Phys. — 1969. — 10.
— P. 1369 – 1372.
26. Taniuti T., Najima N. Perturbation method for nonlinear wave modulation. III // Ibid. — 1973. — 14. —
P. 1389 – 1397.
27. Stokes G.G. On the Stokes wave // Cambridge Phil. Soc. — 1998. — P. 441 – 455.
28. Lange C.G., Newell A.C. The post-buckling problem for thin elastic shells // SIAM J. Appl. Math. — 1974. —
27. — 441 p.
Received 16.09.2002,
after revision — 15.02.2003
ISSN 1562-3076. Нелiнiйнi коливання, 2003, т . 6, N◦ 3
|