Stability of synchronized and clustered states in coupled piecewise linear maps
Parameter regions for different types of stability of synchronized and clustered states are obtained for two interacting ensembles of globally coupled one-dimensional piecewise linear maps. We analyze strong (asymptotic) and weak (Milnor) stability of the synchronized state, as well as its instabi...
Saved in:
Date: | 2004 |
---|---|
Main Author: | Matskiv, I.V. |
Format: | Article |
Language: | English |
Published: |
Інститут математики НАН України
2004
|
Series: | Нелінійні коливання |
Online Access: | http://dspace.nbuv.gov.ua/handle/123456789/177006 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Journal Title: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Cite this: | Stability of synchronized and clustered states in coupled piecewise linear maps / I.V. Matskiv // Нелінійні коливання. — 2004. — Т. 7, № 2. — С. 217-228. — Бібліогр.: 20 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of UkraineSimilar Items
-
Stability of periodic clusters in globally coupled maps
by: Panchuk, A.A., et al.
Published: (2002) -
Chaotifying 2-D piecewise linear maps via a piecewise linear controller function
by: Elhadj, Z., et al.
Published: (2010) -
Topological conjugate piecewise linear unimodal mappings of an interval into itself
by: V. V. Kyrychenko, et al.
Published: (2016) -
Bifurcation and Synchronization of Two Coupled Generators
by: A. A. Martynjuk, et al.
Published: (2017) -
Synchronization of oscillations for coupled Van der Pol oscillators
by: N. V. Zhogoleva, et al.
Published: (2017)