Wexler inequality and almost periodic solutions of differential equations with deviating argument of mixed type

The paper is concerned with the existence and stability of an almost periodic solution of the system with deviating argument dx(t)/dt = A(t)x(t) + f(t, x(t), x(t − τ₁(t)), . . . , x(t − τk(t)). The Wexler inequality for the Cauchy matrix is used. Conditions for stability of the solution are given....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Datum:2004
Hauptverfasser: Akhmet, M.U., Tleubergenova, M.A.
Format: Artikel
Sprache:English
Veröffentlicht: Інститут математики НАН України 2004
Schriftenreihe:Нелінійні коливання
Online Zugang:http://dspace.nbuv.gov.ua/handle/123456789/177017
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Wexler inequality and almost periodic solutions of differential equations with deviating argument of mixed type / M.U. Akhmet, M.A. Tleubergenova // Нелінійні коливання. — 2004. — Т. 7, № 3. — С. 295-301. — Бібліогр.: 18 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-177017
record_format dspace
spelling irk-123456789-1770172021-02-10T01:25:37Z Wexler inequality and almost periodic solutions of differential equations with deviating argument of mixed type Akhmet, M.U. Tleubergenova, M.A. The paper is concerned with the existence and stability of an almost periodic solution of the system with deviating argument dx(t)/dt = A(t)x(t) + f(t, x(t), x(t − τ₁(t)), . . . , x(t − τk(t)). The Wexler inequality for the Cauchy matrix is used. Conditions for stability of the solution are given. Розглядається проблема iснування та стабiльностi майже перiодичного розв’язку системи з вiдхиленням в аргументi dx(t)/dt = A(t)x(t) + f(t, x(t), x(t − τ₁(t)), . . . , x(t − τk(t)) Використовується нерiвнiсть Векслера. Наведено умови стабiльностi розв’язку. 2004 Article Wexler inequality and almost periodic solutions of differential equations with deviating argument of mixed type / M.U. Akhmet, M.A. Tleubergenova // Нелінійні коливання. — 2004. — Т. 7, № 3. — С. 295-301. — Бібліогр.: 18 назв. — англ. 1562-3076 http://dspace.nbuv.gov.ua/handle/123456789/177017 517.9 en Нелінійні коливання Інститут математики НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description The paper is concerned with the existence and stability of an almost periodic solution of the system with deviating argument dx(t)/dt = A(t)x(t) + f(t, x(t), x(t − τ₁(t)), . . . , x(t − τk(t)). The Wexler inequality for the Cauchy matrix is used. Conditions for stability of the solution are given.
format Article
author Akhmet, M.U.
Tleubergenova, M.A.
spellingShingle Akhmet, M.U.
Tleubergenova, M.A.
Wexler inequality and almost periodic solutions of differential equations with deviating argument of mixed type
Нелінійні коливання
author_facet Akhmet, M.U.
Tleubergenova, M.A.
author_sort Akhmet, M.U.
title Wexler inequality and almost periodic solutions of differential equations with deviating argument of mixed type
title_short Wexler inequality and almost periodic solutions of differential equations with deviating argument of mixed type
title_full Wexler inequality and almost periodic solutions of differential equations with deviating argument of mixed type
title_fullStr Wexler inequality and almost periodic solutions of differential equations with deviating argument of mixed type
title_full_unstemmed Wexler inequality and almost periodic solutions of differential equations with deviating argument of mixed type
title_sort wexler inequality and almost periodic solutions of differential equations with deviating argument of mixed type
publisher Інститут математики НАН України
publishDate 2004
url http://dspace.nbuv.gov.ua/handle/123456789/177017
citation_txt Wexler inequality and almost periodic solutions of differential equations with deviating argument of mixed type / M.U. Akhmet, M.A. Tleubergenova // Нелінійні коливання. — 2004. — Т. 7, № 3. — С. 295-301. — Бібліогр.: 18 назв. — англ.
series Нелінійні коливання
work_keys_str_mv AT akhmetmu wexlerinequalityandalmostperiodicsolutionsofdifferentialequationswithdeviatingargumentofmixedtype
AT tleubergenovama wexlerinequalityandalmostperiodicsolutionsofdifferentialequationswithdeviatingargumentofmixedtype
first_indexed 2025-07-15T14:58:38Z
last_indexed 2025-07-15T14:58:38Z
_version_ 1837725404833513472
fulltext UDC 517.9 WEXLER INEQUALITY AND ALMOST PERIODIC SOLUTIONS OF DIFFERENTIAL EQUATIONS WITH DEVIATING ARGUMENT OF MIXED TYPE НЕРIВНIСТЬ ВЕКСЛЕРА I МАЙЖЕ ПЕРIОДИЧНI РОЗВ’ЯЗКИ ДИФЕРЕНЦIАЛЬНИХ РIВНЯНЬ З АРГУМЕНТОМ МIШАНОГО ТИПУ, ЩО ВIДХИЛЯЄТЬСЯ M. U. Akhmet Middle East Techn. Univ. 06531 Ankara, Turkey e-mail: marat@metu.edu.tr M. A. Tleubergenova Kazakh Nat. Techn. Univ. 463000 Aktobe, Mares’eva Str., 10 The paper is concerned with the existence and stability of an almost periodic solution of the system with deviating argument dx(t) dt = A(t)x(t) + f(t, x(t), x(t− τ1(t)), . . . , x(t− τk(t)). The Wexler inequality for the Cauchy matrix is used. Conditions for stability of the solution are given. Розглядається проблема iснування та стабiльностi майже перiодичного розв’язку системи з вiдхиленням в аргументi dx(t) dt = A(t)x(t) + f(t, x(t), x(t− τ1(t)), . . . , x(t− τk(t)). Використовується нерiвнiсть Векслера. Наведено умови стабiльностi розв’язку. 1. Introduction and preliminaries. Different aspects of the theory of almost periodic solutions of quasilinear differential equations with deviating argument, including applications, has been investigated by many authors [1 – 7]. The problem of existence of almost periodic solutions for functional differential equations was considered by J. Hale [2] for the case when the non perturbed system is autonomous or periodic and the argument is retarded. The paper [4] deals with the existence of almost periodic solutions of a system with unique and constant deviati- on. The aim of the present paper is to investigate the problem for the system (1), where the deviations and the matrix of coefficients are almost periodic functions. Moreover, we assume that the equation is of mixed type [3], that is, the derivative of x depends on the past as well as the future values of t. This type of equations, apparently, can be applied to problems of antici- patory systems [8]. One should emphasize that the general theory has not been considered for this type of equations as well as for the equations with retarded argument or for the systems of the neutral type [3, 9]. c© M. U. Akhmet, M. A. Tleubergenova, 2004 ISSN 1562-3076. Нелiнiйнi коливання, 2004, т . 7, N◦ 3 295 296 M. U. AKHMET, M. A. TLEUBERGENOVA Let N,R be sets of all natural and real numbers respectively, || · || be the Euclidean norm in Rn, n ∈ N. Let s ∈ R be a positive number. We denote Gs = {x ∈ Rn|||x|| ≤ s} and Gk+1 s = Gs ×Gs × . . .×Gs (that is, Gk+1 s is the Cartesian product of k copies of Gs). Let a set C0(R) (respectively, C0(R × Gk+1 H ) for a given H ∈ R,H > 0) be a set of all functions that are bounded and uniformly continuous on R (respectively on R×Gk+1 H ). Definition 1. For f ∈ C0(R) (respectively C0(R ×Gk+1 H )) and τ ∈ R the translation of f by τ is the function Qτf = f(t+ τ), t ∈ R (respectively Qτf(t, z) = f(t+ τ, z), (z, t) ∈ R×Gk+1 H ). Definition 2. A number τ ∈ R is called ε-translation number of a function f ∈ C0(R)( C0(R×Gk+1 H ) ) if ||Qτf − f || < ε for every t ∈ R((t, z) ∈ R×Gk+1 H ). Definition 3. A function f ∈ C0(R) ( C0(R × Gk+1 H ) ) is called an almost periodic (almost periodic in t uniformly with respect to z ∈ Gk+1 H ) if for every ε ∈ R, ε > 0, there exists a corresponding dense set of ε-translations of f. Denote by AP(R) ( AP(R×Gk+1 H ) ) the set of all such functions [10, 11]. The aim of this paper is to investigate the problem of existence and exponential stability of an almost periodic solution of a system of differential equations with deviating argument of the form dx dt = A(t)x + f(t, x(t), x(t− τ1(t)), . . . , x(t− τk(t)), (1) where x ∈ Rn, t ∈ R. We will need the following assumptions: (C1) A(t) ∈ AP(R) is an n× n matrix, τj ∈ AP(R), j = 1, k. (C2) f ∈ AP(R×Gk+1 s ) for every s ∈ R, s ≥ 0. Let X(t, s), X(s, s) = I , be a Cauchy matrix of the associate homogeneous linear system dx dt = A(t)x. (2) One of our basic assumptions is the following. (C3) ∃{a, b} ⊂ R, b ≥ 1, a > 0, such that ||X(t, s)|| ≤ b exp(−a(t− s)), t ≥ s. (3) Lemma 1 [12 – 14]. Let A(t) ∈ AP(R) and the condition (C3) be satisfied. Then ||X(t + τ, s + τ)−X(t, s)|| < ε exp ( −a 2 (t− s) ) , (4) if τ is aε 2b2 -translation number of A(t). Lemma 2 [10]. If f ∈ AP(R × Gk+1 H ) and z ∈ AP(R), z : R → Gk+1 H . Then f(t, z(t)) ∈ ∈ AP(R). Remark 1. Lemma 1 is due to D. Wexler [12] and is of principal significance in the arti- cle. It states that the matrix X(t, s) is "diagonal almost periodic". Information relevant to this assertion can be found in the book by W. A. Coppel (see Proposition 4 in Lecture 8 of [15]). ISSN 1562-3076. Нелiнiйнi коливання, 2004, т . 7, N◦ 3 WEXLER INEQUALITY AND ALMOST PERIODIC SOLUTIONS OF DIFFERENTIAL EQUATIONS . . . 297 2. Main result. In this section we consider the problem of existence of an exponentially stable almost periodic solution of (1). Lemma 3. If φ ∈ AP(R), then φ(t− τj(t)) ∈ AP(R), j = 1, k. Proof. Fix ε ∈ R, ε > 0. Since φ ∈ C0(R) there exists δ = δ (ε 2 ) such that ||φ(t1)−φ(t2)|| < < ε 2 if |t1 − t2| < δ. Denote ε1 = min (ε 2 , δ ) . By using the method of common translati- on numbers [10, 11] one can show that there exists a corresponding dense set of ε-translation numbers of φ and τj(t). Let τ be one of them. Then ||φ(t + τ − τj(t + τ))− φ(t− τj(t))|| ≤ ||φ(t + τ − τj(t + τ))− φ(t + τ − τj(t))||+ + ||φ(t + τ − τj(t))− φ(t− τj(t))|| < ε 2 + ε 2 = ε. The lemma is proved. Assume that the following conditions hold: (C4) ∃l ∈ R, l > 0, such that ||f(t, z1)− f(t, z2)|| ≤ l k∑ j=0 ||zj 1 − zj 2||; (5) where zi = (z0 i , . . . , zk i ) ∈ Rn(k+1), i = 1, 2. Fix σ ∈ R, 0 < σ < a. Denote τ0 = max { 0, sup t τj(t), j = 1, k } , m(l) = 1− exp(στ0)blk a− σ . We assume in addition that l is sufficiently small so that (C5) l < bk a ; (C6) m(l) > 0. Theorem 1. Assume that (C1)−(C5) hold. Then there exists a unique almost periodic solution ξ0(t) of (1). Proof. Let T be an operator on AP(R) such that Tφ = t∫ ∞ X(t, s)Fφ(s)ds. (6) Let φ ∈ AP(R). By using Lemma 3 one can prove that Fφ(t) ∈ AP(R), and by Lemmas 1, 2 on the base of the method of common translation numbers one can verify that there is a corresponding dense ISSN 1562-3076. Нелiнiйнi коливання, 2004, т . 7, N◦ 3 298 M. U. AKHMET, M. A. TLEUBERGENOVA set Γ ⊂ R of ε-translation numbers for Fφ such that if τ ∈ Γ then (4) is valid for t ≥ s. Then ||Tφ(t + τ)− Tφ(t)|| = ∥∥∥∥∥∥ t∫ ∞ X(t + τ, s)Fφ(s)ds− t∫ ∞ X(t, s)Fφ(s)ds ∥∥∥∥∥∥ ≤ ≤ t∫ ∞ ||X(t + τ, s + τ)|| ||Fφ(s + τ)− Fφ(s)||ds+ + t∫ ∞ ||X(t + τ, s + τ)−X(t, s)|| ||Fφ(s)||ds ≤ ≤ t∫ ∞ b exp(−a(t− s))εds + t∫ ∞ ε exp ( −a a 2 (t− s) ) Mφds = b + 2Mφ a ε, (7) where Mφ = supt ||Fφ||. Thus Tφ ∈ AP(R). Moreover if φ1, φ2 ∈ AP(R) then, for every t ≥ t0, ||Tφ1(t)− Tφ2(t)|| = ∥∥∥∥∥∥ t∫ −∞ X(t, s)Fφ1(s)ds− t∫ −∞ X(t, s)Fφ2(s)ds ∥∥∥∥∥∥ ≤ ≤ t∫ −∞ ||X(t, s)|| ||Fφ1(s)− Fφ2(s)||ds ≤ ≤ t∫ −∞ b exp(−a(t− s))lk||φ1 − φ2||0ds = bkl a ||φ1 − φ2||0. The last inequality implies that ||Tφ1(t)− Tφ2(t)||0 ≤ bkl a ||φ1 − φ2||0, (8) and the condition (C5) implies that the operator T : AP(R) → AP(R) is contractive. Thus there exists a unique fixed point ξ0 ∈ AP(R) of T which is a solution of (1). The theorem is proved. Remark 2. Apparently, the general problem of existence of solutions for equations of mixed type has not been considered yet. Even for the case of advanced argument there are certain difficulties if we try to define a solution for inceasing t [16, 17]. J. Hale remarked in [3] that "these equations seem to dictate that boundary conditions should be specified in order to obtain a solution in the way as one does for elliptic partial differential equations". We regard the ISSN 1562-3076. Нелiнiйнi коливання, 2004, т . 7, N◦ 3 WEXLER INEQUALITY AND ALMOST PERIODIC SOLUTIONS OF DIFFERENTIAL EQUATIONS . . . 299 boundedness of the solution on R as a boundary condition in the proof of Theorem 1. Authors of [18] used this method to prove existence of a bounded solution for the equation of advanced type when t ≥ t0. Formulation of stability conditions for the solution ξ0(t). Fix t0 ∈ R, denote C[t0 − τ0, t0] the set of all initial functions. Let x(t) be a solution of (1) such that (D1) x(t) =  π(t) ∈ C[t0 − τ0, t0], t0 − τ0 ≤ t ≤ t0, if τ0 > 0, x0 ∈ Rn, if τ0 = 0. (D2) x(t) satisfies the equation (1) for all t ≥ t0. Definition 4. The solution ξ0(t) is called uniformly exponential stable if there exists a number α ∈ R,α > 0, such that for every ε > 0 there exists a number δ = δ(ε) such that the inequality maxt0−τ0≤t≤t0 ||π(t) − ξ0(t)|| < δ (or inequality ||x0 − φ(t0)|| < δ, if τ0 = 0) implies that there exists a unique solution x(t) which satisfies conditions (D1), (D2) and ||x(t) − ξ0(t)|| < < ε exp(−α(t− t0)) for all t ≥ t0. Remark 3. Analyzing definitions of Lyapunov stability for different types of equations it is possible to stress the following two generic conditions.The first one is the closeness of the initial values (the initial functions) for a solution whose stability is tested and a neighbour solution. The second one is the condition that the process after the initial moment of time should be governed only by a differential equation.These circumstances are described by conditions (D1) and (D2). And evidently, (D2) induces the condition of ignoring the negative values of τj(t) for the construction of initial conditions.We decided to make this comment after Definition 4, since the formulation of stability of solutions of the equations with mixed type of deviating arguments has not been encountered in the literature previosly. The following theorem holds. Theorem 2. Assume that (C1) − (C6) hold. Then the almost periodic solution ξ0(t) of (1) is uniformly exponential stable. Proof. One can see that v(t) = x(t)− ξ0(t) is a solution of the equation dv dt = A(t)v + w(t, v(t), v(t− τ1(t)), . . . , v(t− τk(t)), (9) where v(t) = θ(t)(θ = π(t)− ξ0(t)) on [t0 − τ0, t0], w(t, v(t),v(t− τ1(t)), . . . , v(t− τk(t)) = = f(t, ξ0(t) + v(t), . . . , ξ0(t− τk(t)) + v(t− τk(t)))− f(t, ξ0(t), . . . , ξ0(t− τk(t)), and w satisfies ||w(t, v1)− w(t, v2)|| ≤ l k∑ j=0 ||vj 1 − vj 2||, ISSN 1562-3076. Нелiнiйнi коливання, 2004, т . 7, N◦ 3 300 M. U. AKHMET, M. A. TLEUBERGENOVA vi = (v0 i , . . . , v k i ) ∈ Rn(k+1), i = 1, 2. Thus we can reduce the problem of stability of ξ0(t) to the problem of stability of the zero solution v = 0 of (9) . Let us fix ε > 0 and denote K(l, δ) = b m(l) δ, where δ ∈ R, δ > 0. Take δ so small that K(l, δ) < ε. Assume, without lost of any generality, that t0 = 0, τ0 > 0 and let C[−τ0, 0] be the set of all initial functions. Fix θ(t) ∈ C[−τ0, 0] such that max[−τ0,0] ||θ(t)|| < δ and let Ψθ = { φ ∈ C0[−τ0,+∞)|φ(t) = θ(t) if − τ0 ≤ t ≤ 0, ||φ(t)||1 ≤ K(l, δ) exp(−σt) } , where C0[−τ0,+∞) denotes the restrictions of all functions from C0(R) to [−τ0,+∞) and ||φ||1 = supt≥t0 ||φ(t)||. Define on Ψθ an operator Π (see [2]) such that if φ ∈ Ψθ then Πφ =  θ(t) for all − τ0 ≤ t ≤ 0, X(t, 0)θ(0) + t∫ 0 X(t, s)Fφ(s)ds, otherwise . We shall show that Π : Ψθ → Ψθ. Indeed, for t ≥ 0 we have that ||Πφ|| ≤ b exp(−at)δ + t∫ 0 b exp ( −a(t− s) ) lK(l, δ) k+1∑ j=0 exp ( −σ(s− τj(s)) ) ds ≤ ≤ exp(−σt) [ bδ + (k + 1) exp(στ0)blK(l, δ) a− σ ] = K(l, δ) exp(−σt). Differentiating Πφ on [0,∞) it is easy to show that [Πφ]′ is a function uniformly bounded on [0,∞) and, hence, Πφ is a uniformly continuous function. Let φ1, φ2 ∈ Ψθ. Then ||Πφ1 −Πφ2|| ≤ t∫ 0 b exp ( −a(t− s) ) lk||φ1 − φ2||1ds ≤ blk a ||φ1 − φ2||1. From (C5) it follows that there is a unique fixed point of the operator Π : Ψθ → Ψθ which is a solution v(t) of (9) such that x(t) = v(t) + ξ0(t) is a unique solution of (1) which satisfies conditions (D1), (D2). The theorem is proved. 1. Gopalsamy K. On an almost periodic delay-differential system with almost periodic delays // Math. Jap. — 1985. — 30. — P. 849 – 856. 2. Hale J. Theory of functional differential equations. — New York etc.: Springer, 1977. 3. Hale J. Functional differential equations. — New York etc.: Springer, 1971. 4. Lin Qing Cong. Almost periodic solutions of a class of higher-dimensional almost periodic systems with deviating arguments (Chinese. English, Chinese summary) // J. Zhangzhou Teach. Coll. Nat. Sci. — 1999. — 12. — P. 21 – 24. ISSN 1562-3076. Нелiнiйнi коливання, 2004, т . 7, N◦ 3 WEXLER INEQUALITY AND ALMOST PERIODIC SOLUTIONS OF DIFFERENTIAL EQUATIONS . . . 301 5. Seifert G. Almost periodic solutions for undamped nonhomogeneous delay-differential equations // Proc. Amer. Math. Soc. — 2002. — 130. — P. 2001 – 2005 (electronic). 6. Xu Jian Hua, Wang Zhi Cheng. Almost periodic solutions of a class of almost periodic predator-prey systems with time delay // Acta math. appl. sinica. — 2000. — 23. — P. 394 – 402. 7. Zhang Shunian, Zheng Guang. Almost periodic solutions of delay difference systems // Appl. Math. Comput. — 2002. — 131. — P. 497 – 516. 8. Corduneanu C. Some remarks on functional equations with advanced-delayed operations // Sixth Int. Conf. Comput. Anticipatory Systems, HEC Liege, Belgium (August 11-16, 2003): Abstract book / Ed. D. M. Dubois. — P. 4. 9. Driver R. D. Ordinary and delay differential equations // Appl. Math. Sci. — New York, Heidelberg: Springer, 1977. — 20. 10. Corduneanu C. Almost periodic functions. — New York etc.: Int. Publ., 1968. 11. Fink A. M. Almost periodic differential quations // Lect. Notes Math. — Berlin etc.: Springer, 1974. 12. Wexler D. Solutions périodiques et presque-périodiques des systémes d’équations différetielles aux impulsi- ons // Rev. roum. math. pures et appl. — 1965. — 10. — P. 1163 – 1199. 13. Halanay A., Wexler D. Teoria calitativă a sistemelor cu impulsuri. — Bucuresti: Editura Acad. Republ. Soc. România, 1968. 14. Samoilenko A. M., Perestyuk N. A. Impulsive differential equations. — Singapore: World Sci., 1995. 15. Coppel W. A. Dichotomies in stability theory. — Berlin etc.: Springer, 1978. 16. El’sgol’ts L. E. Introduction to the theory of differential equations with deviating arguments. — San Francisco etc.: Holden-Day Inc., 1966. 17. Zverkin A. M., Kamenskii G. A., and Norkin S. B. On the formulation of initial conditions for differential equations with advanced argument (Russian) // Uspekhi Mat. Nauk. — 1960. — 15. — P. 133 – 136. 18. Doss S., Nasr S. K. On the functional equation y ′ = f(x, y(x), y(x + h)), h > 0 // Amer. J. Math. — 1953. — 75. — P. 713 – 716. Received 28.05.2004 ISSN 1562-3076. Нелiнiйнi коливання, 2004, т . 7, N◦ 3