A new Hermite – Hadamard type inequality and an application to quasi-Einstein metrics
We firstly establish a new generalization of the classical Hermite – Hadamard inequality for a real-valued convex function. Then the convexity of the matrix function g(A) = f(det A) is proved under certain conditions on the function f and the matrix A. Based on these, we derive a new Hermite – Hadam...
Saved in:
Date: | 2014 |
---|---|
Main Author: | Xiang Gao |
Format: | Article |
Language: | English |
Published: |
Інститут математики НАН України
2014
|
Series: | Нелінійні коливання |
Online Access: | http://dspace.nbuv.gov.ua/handle/123456789/177108 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Journal Title: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Cite this: | A new Hermite – Hadamard type inequality and an application to quasi-Einstein metrics / Xiang Gao // Нелінійні коливання. — 2014. — Т. 17, № 4. — С. 558-573 — Бібліогр.: 9 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of UkraineSimilar Items
-
A new Hermite – Hadamard type inequality and an application to quasi-Einstein metrics
by: X. Gao
Published: (2014) -
On some Hermite–Hadamard inequalities for fractional integrals and their applications
by: S.-R. Hwang, et al.
Published: (2020) -
Some new bounds of Gauss–Jacobi and Hermite–Hadamard type integral inequalities
by: A. Kashuri, et al.
Published: (2021) -
Hermite–Hadamard-type inequalities for multiplicative harmonic s-convex functions
by: S. Özcan, et al.
Published: (2024) -
Hermite–Hadamard-Type Integral Inequalities for Functions Whose First Derivatives are Convex
by: Feng Qi, et al.
Published: (2015)