Oscillation of fourth-order delay differential equations

This article is concerned with oscillation of a certain class of fourth-order delay differential equations. Some new oscillation criteria are presented which include Hille and Nehari type. The results obtained improve some results obtained earlier in [Zhang C., Li T., Sun B., Thandapani E. On the os...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Datum:2013
Hauptverfasser: Zhang, C., Li, T., Saker, S.H.
Format: Artikel
Sprache:English
Veröffentlicht: Інститут математики НАН України 2013
Schriftenreihe:Нелінійні коливання
Online Zugang:http://dspace.nbuv.gov.ua/handle/123456789/177123
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Oscillation of fourth-order delay differential equations / C. Zhang, T. Li, S.H. Saker // Нелінійні коливання. — 2013. — Т. 16, № 3. — С. 322-335. — Бібліогр.: 22 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-177123
record_format dspace
spelling irk-123456789-1771232021-02-11T01:28:44Z Oscillation of fourth-order delay differential equations Zhang, C. Li, T. Saker, S.H. This article is concerned with oscillation of a certain class of fourth-order delay differential equations. Some new oscillation criteria are presented which include Hille and Nehari type. The results obtained improve some results obtained earlier in [Zhang C., Li T., Sun B., Thandapani E. On the oscillation of higher-order half-linear delay differential equations // Appl. Math. Lett. — 2011. — 24. — P. 1618 – 1621]. Two examples are considered to illustrate the main results. Розглянуто коливання в деякому класi диференцiальних рiвнянь четвертого порядку з загаюванням. Знайдено новi критерiї коливання, якi включають в себе критерiї типу Хiлле та Нехарi. Отриманi результати покращують деякi результати з [Zhang C., Li T., Sun B., Thandapani E. On the oscillation of higher-order half-linear delay differential equations // Appl. Math. Lett. — 2011. — 24. — P. 1618 – 1621]. Розглянуто два приклади, якi iлюструють основнi результати. 2013 Article Oscillation of fourth-order delay differential equations / C. Zhang, T. Li, S.H. Saker // Нелінійні коливання. — 2013. — Т. 16, № 3. — С. 322-335. — Бібліогр.: 22 назв. — англ. 1562-3076 http://dspace.nbuv.gov.ua/handle/123456789/177123 517.9 en Нелінійні коливання Інститут математики НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description This article is concerned with oscillation of a certain class of fourth-order delay differential equations. Some new oscillation criteria are presented which include Hille and Nehari type. The results obtained improve some results obtained earlier in [Zhang C., Li T., Sun B., Thandapani E. On the oscillation of higher-order half-linear delay differential equations // Appl. Math. Lett. — 2011. — 24. — P. 1618 – 1621]. Two examples are considered to illustrate the main results.
format Article
author Zhang, C.
Li, T.
Saker, S.H.
spellingShingle Zhang, C.
Li, T.
Saker, S.H.
Oscillation of fourth-order delay differential equations
Нелінійні коливання
author_facet Zhang, C.
Li, T.
Saker, S.H.
author_sort Zhang, C.
title Oscillation of fourth-order delay differential equations
title_short Oscillation of fourth-order delay differential equations
title_full Oscillation of fourth-order delay differential equations
title_fullStr Oscillation of fourth-order delay differential equations
title_full_unstemmed Oscillation of fourth-order delay differential equations
title_sort oscillation of fourth-order delay differential equations
publisher Інститут математики НАН України
publishDate 2013
url http://dspace.nbuv.gov.ua/handle/123456789/177123
citation_txt Oscillation of fourth-order delay differential equations / C. Zhang, T. Li, S.H. Saker // Нелінійні коливання. — 2013. — Т. 16, № 3. — С. 322-335. — Бібліогр.: 22 назв. — англ.
series Нелінійні коливання
work_keys_str_mv AT zhangc oscillationoffourthorderdelaydifferentialequations
AT lit oscillationoffourthorderdelaydifferentialequations
AT sakersh oscillationoffourthorderdelaydifferentialequations
first_indexed 2025-07-15T15:08:39Z
last_indexed 2025-07-15T15:08:39Z
_version_ 1837726038143008768
fulltext UDC 517.9 OSCILLATION OF FOURTH-ORDER DELAY DIFFERENTIAL EQUATIONS* КОЛИВАННЯ ДИФЕРЕНЦIАЛЬНИХ РIВНЯНЬ ЧЕТВЕРТОГО ПОРЯДКУ З ЗАГАЮВАННЯМ C. Zhang School Control Sci. and Engineering, Shandong Univ. Jinan, Shandong 250061, P. R. China e-mail: zchui@sdu.edu.cn T. Li School Control Sci. and Engineering, Shandong Univ. Jinan, Shandong 250061, P. R. China e-mail: litongx2007@163.com S. H. Saker Mansoura Univ. Mansoura 35516, Egypt e-mail: shsaker@mans.edu.eg This article is concerned with oscillation of a certain class of fourth-order delay differential equations. Some new oscillation criteria are presented which include Hille and Nehari type. The results obtained improve some results obtained earlier in [Zhang C., Li T., Sun B., Thandapani E. On the oscillation of higher-order half-linear delay differential equations // Appl. Math. Lett. — 2011. — 24. — P. 1618 – 1621]. Two examples are considered to illustrate the main results. Розглянуто коливання в деякому класi диференцiальних рiвнянь четвертого порядку з загаюван- ням. Знайдено новi критерiї коливання, якi включають в себе критерiї типу Хiлле та Нехарi. Отриманi результати покращують деякi результати з [Zhang C., Li T., Sun B., Thandapani E. On the oscillation of higher-order half-linear delay differential equations // Appl. Math. Lett. — 2011. — 24. — P. 1618 – 1621]. Розглянуто два приклади, якi iлюструють основнi результати. 1. Introduction. In this paper, we are concerned with oscillation of the fourth-order quasilinear delay differential equation ( r(t) ( x ′′′ (t) )α)′ + q(t)xα(τ(t)) = 0, for t ≥ t0. (1.1) We will assume that the following assumptions hold: (H1) α is a quotient of odd positive integers; (H2) r ∈ C1[t0,∞), r ′ (t) ≥ 0, r(t) > 0, q, τ ∈ C[t0,∞), q(t) ≥ 0, τ(t) ≤ t, and limt→∞ τ(t) = ∞. ∗ This research is supported by NNSF of P. R. China (Grant Nos. 61034007, 51277116, 51107069). c© C. Zhang, T. Li, S. H. Saker, 2013 322 ISSN 1562-3076. Нелiнiйнi коливання, 2013, т . 16, N◦ 3 OSCILLATION OF FOURTH-ORDER DELAY DIFFERENTIAL EQUATIONS 323 By a solution of (1.1), we mean a function x ∈ C3[Tx,∞), Tx ≥ t0, which has the property r(x ′′′ )α ∈ C1[Tx,∞) and satisfies (1.1) on [Tx,∞). We consider only those solutions x of (1.1) which satisfy sup{|x(t)| : t ≥ T} > 0 for all T ≥ Tx. We assume that (1.1) possesses such a solution. A solution of (1.1) is called oscillatory if it has arbitrarily large zeros on [Tx,∞) and otherwise it is called nonoscillatory. Equation (1.1) is said to be oscillatory if all its solutions are oscillatory. In recent decades, the oscillation of second-order and third-order differential equations have been deeply studied in the literature, we refer the reader to the related books [1, 3 – 5, 13, 15, 21] and the papers [2, 6 – 12, 14, 16 – 20, 22]. In the following, we present some related results that serve and motivate the contents of this paper. Agarwal et al. [2], Kamo and Usami [11, 12], and Kusano et al. [14] considered the oscillation of the fourth-order nonlinear differential equation ( r(t) ( x ′′ (t) )α)′′ + q(t)xβ(t) = 0. Grace et al. [10] examined the oscillation behavior of the fourth-order nonlinear differential equation ( r(t) ( x ′ (t) )α)′′′ + q(t)f(x(g(t))) = 0. Agarwal et al. [7] and Zhang et al. [22] studied the oscillatory properties of the higher-order differential equation ( r(t) ( x(n−1)(t) )α)′ + q(t)xβ(τ(t)) = 0, (1.2) under the conditions ∞∫ t0 1 r1/α(t) dt = ∞, and ∞∫ t0 1 r1/α(t) dt < ∞. (1.3) Zhang et al. [22] obtained some results which ensure that every solution x of (1.2) is either oscillatory or limt→∞ x(t) = 0 for the case where (1.3) holds. As a special case when n = 4, they proved the following result: Let (H1), (H2), and (1.3) hold, and τ(t) < t. Further, assume that for some constant λ0 ∈ (0, 1), the delay differential equation y ′ (t) + q(t) ( λ0τ 3(t) 6r1/α(τ(t)) )α y(τ(t)) = 0 (1.4) is oscillatory. If lim sup t→∞ t∫ t0 [ q(s) ( λ1 2 τ2(s) )α δα(s)− αα+1 (α+ 1)α+1 1 δ(s)r1/α(s) ] ds = ∞ (1.5) ISSN 1562-3076. Нелiнiйнi коливання, 2013, т . 16, N◦ 3 324 C. ZHANG, T. LI, S. H. SAKER for some constant λ1 ∈ (0, 1), where δ(t) := ∫ ∞ t r−(1/α)(s) ds, then every solution of (1.1) is either oscillatory or converges to zero as t → ∞. Our aim in this paper is to employ the Riccati technique to establish some new conditions for oscillation of all solutions of (1.1). The results not only differ from the results obtained in [22], but also improve some of them. Some examples are considered to illustrate the main results. 2. Main results. In this section, we will derive some new criteria for oscillation of (1.1). To prove the main results we will need the following lemma. Lemma 2.1 (see [3], Lemma 2.2.3). Let f ∈ Cn([t0,∞),R+). Assume that f (n)(t) is of fixed sign and not identically zero on [t0,∞), and there exists a t1 ≥ t0 such that f (n−1)(t)f (n)(t) ≤ 0 for all t ≥ t1. If limt→∞ f(t) 6= 0, then for every k ∈ (0, 1), there exists tk ∈ [t1,∞) such that f(t) ≥ k (n− 1)! tn−1|f (n−1)(t)|, for t ∈ [tk,∞). Now, we are ready to state and prove the main results. For convenience, we denote R(t) := ∞∫ t 1 r 1 α (s) ds, ρ ′ +(t) := max{0, ρ′(t)}, and θ ′ +(t) := max{0, θ′(t)}. In the sequel, all occurring functional inequalities considered in this section are assumed to hold eventually, that is, they are satisfied for all t large enough. Theorem 2.1. Let (H1), (H2), and (1.3) hold. Assume that there exists a positive function ρ ∈ C1[t0,∞) such that ∞∫ t0 [ q(s) ( τ2(s) s2 )α ρ(s)− 2α (α+ 1)α+1 r(s)(ρ ′ +(s)) α+1 (k1ρ(s)s2)α ] ds = ∞, (2.1) for some constant k1 ∈ (0, 1). Assume further that there exists a positive function θ ∈ C1[t0,∞) such that ∞∫ t0 θ(s) ∞∫ s  1 r(ϑ) ∞∫ ϑ q(ς) ( τ2(ς) ς2 )α dς  1 α dϑ− (θ ′ +(s)) 2 4θ(s)  ds = ∞. (2.2) If ∞∫ t0 q(s)  ∞∫ s ∞∫ u R(v)dvdu α − αα+1 (α+ 1)α+1 ∫∞ s R(v)dv∫∞ s ∫∞ u R(v)dvdu  ds = ∞, (2.3) ISSN 1562-3076. Нелiнiйнi коливання, 2013, т . 16, N◦ 3 OSCILLATION OF FOURTH-ORDER DELAY DIFFERENTIAL EQUATIONS 325 and ∞∫ t0 [ q(s) ( k2 2 τ2(s) )α Rα(s)− αα+1 (α+ 1)α+1R(s)r1/α(s) ] ds = ∞, (2.4) for some constant k2 ∈ (0, 1), then every solution of (1.1) is oscillatory. Proof. Assume that (1.1) has a nonoscillatory solution x. Without loss of generality we may assume that x is eventually positive. It follows from (1.1) that there exist four possible cases for t ≥ t1, where t1 ≥ t0 is large enough: Case 1 : x(t) > 0, x ′ (t) > 0, x ′′ (t) > 0, x ′′′ (t) > 0, x(4)(t) ≤ 0, (r(x ′′′ )α) ′ (t) ≤ 0. Case 2 : x(t) > 0, x ′ (t) > 0, x ′′ (t) < 0, x ′′′ (t) > 0, x(4)(t) ≤ 0, (r(x ′′′ )α) ′ (t) ≤ 0. Case 3 : x(t) > 0, x ′ (t) < 0, x ′′ (t) > 0, x ′′′ (t) < 0, (r(x ′′′ )α) ′ (t) ≤ 0. Case 4 : x(t) > 0, x ′ (t) > 0, x ′′ (t) > 0, x ′′′ (t) < 0, (r(x ′′′ )α) ′ (t) ≤ 0. Assume that Case 1 holds. By Kiguradze Lemma [13], we have x(t) ≥ (t/2)x ′ (t), and so x(τ(t)) x(t) ≥ τ2(t) t2 . (2.5) Define ω(t) := ρ(t) r(t)(x ′′′ )α(t) xα(t) , t ≥ t1. (2.6) Then ω(t) > 0 for t ≥ t1, and ω ′ (t) = ρ ′ (t) r(t)(x ′′′ )α(t) xα(t) + ρ(t) (r(x ′′′ )α) ′ (t) xα(t) − αρ(t) x α−1(t)x ′ (t)r(t)(x ′′′ )α(t) x2α(t) . (2.7) From Lemma 2.1, we have x ′ (t) ≥ k 2 t2x ′′′ (t) (2.8) for every k ∈ (0, 1) and for all sufficiently large t. Hence, we obtain by (2.7) and (2.8) that ω ′ (t) ≤ ρ ′ (t) r(t)(x ′′′ )α(t) xα(t) + ρ(t) (r(x ′′′ )α) ′ (t) xα(t) − αk 2 t2ρ(t) x ′′′ (t)r(t)(x ′′′ )α(t) xα+1(t) . Hence by (1.1), we get ω ′ (t) ≤ −q(t) ( τ2(t) t2 )α ρ(t) + ρ ′ +(t) ρ(t) ω(t)− αk 2 t2 (r(t)ρ(t)) 1 α ω α+1 α (t). (2.9) ISSN 1562-3076. Нелiнiйнi коливання, 2013, т . 16, N◦ 3 326 C. ZHANG, T. LI, S. H. SAKER Set A := αkt2 2(r(t)ρ(t)) 1 α , B := ρ ′ +(t) ρ(t) , y := ω(t). Using the inequality By −Ay α+1 α ≤ αα (α+ 1)α+1 Bα+1 Aα , A,B > 0, we have ρ ′ +(t) ρ(t) ω(t)− αkt2 2(r(t)ρ(t)) 1 α ω α+1 α (t) ≤ 2α (α+ 1)α+1 r(t)(ρ ′ +(t)) α+1 (kρ(t)t2)α . Hence, we obtain ω ′ (t) ≤ −q(t) ( τ2(t) t2 )α ρ(t) + 2α (α+ 1)α+1 r(t)(ρ ′ +(t)) α+1 (kρ(t)t2)α , which implies that t∫ t1 [ q(s) ( τ2(s) s2 )α ρ(s)− 2α (α+ 1)α+1 r(s)(ρ ′ +(s)) α+1 (kρ(s)s2)α ] ds ≤ ω(t1), for every k ∈ (0, 1) and for all sufficiently large t. This is a contradiction to (2.1). Assume that Case 2 holds. Integrating (1.1) from t to l, we have r(l)(x ′′′ )α(l)− r(t)(x′′′)α(t) + l∫ t q(s)xα(τ(s)) ds = 0. By virtue of x > 0, x ′ > 0, and x ′′ < 0, we get x(t) ≥ (t/2)x ′ (t), and so (2.5) holds. Then by (2.5), we have r(l)(x ′′′ )α(l)− r(t)(x′′′)α(t) + l∫ t q(s) ( τ2(s) s2 )α xα(s) ds ≤ 0, from which follows by x ′ > 0 that r(l)(x ′′′ )α(l)− r(t)(x′′′)α(t) + xα(t) l∫ t q(s) ( τ2(s) s2 )α ds ≤ 0. Letting l → ∞, we have −r(t)(x′′′)α(t) + xα(t) ∞∫ t q(s) ( τ2(s) s2 )α ds ≤ 0, ISSN 1562-3076. Нелiнiйнi коливання, 2013, т . 16, N◦ 3 OSCILLATION OF FOURTH-ORDER DELAY DIFFERENTIAL EQUATIONS 327 i.e., −x′′′(t) + x(t)  1 r(t) ∞∫ t q(s) ( τ2(s) s2 )α ds  1 α ≤ 0. Integrating again from t to∞, we get x ′′ (t) + x(t) ∞∫ t  1 r(ϑ) ∞∫ ϑ q(s) ( τ2(s) s2 )α ds  1 α dϑ ≤ 0. (2.10) Define ξ(t) := θ(t) x ′ (t) x(t) , t ≥ t1. Then ξ(t) > 0 for t ≥ t1, and ξ ′ (t) = θ ′ (t) x ′ (t) x(t) + θ(t) x ′′ (t)x(t)− (x ′ )2(t) x2(t) = = θ(t) x ′′ (t) x(t) + θ ′ (t) θ(t) ξ(t)− ξ2(t) θ(t) . Hence by (2.10), we get ξ ′ (t) ≤ −θ(t) ∞∫ t  1 r(ϑ) ∞∫ ϑ q(s) ( τ2(s) s2 )α ds  1 α dϑ+ θ ′ +(t) θ(t) ξ(t)− ξ2(t) θ(t) . (2.11) Thus, we have ξ ′ (t) ≤ −θ(t) ∞∫ t  1 r(ϑ) ∞∫ ϑ q(s) ( τ2(s) s2 )α ds  1 α dϑ+ (θ ′ +(t)) 2 4θ(t) , which yields t∫ t1 θ(s) ∞∫ s  1 r(ϑ) ∞∫ ϑ q(ς) ( τ2(ς) ς2 )α dς  1 α dϑ− (θ ′ +(s)) 2 4θ(s)  ds ≤ ξ(t1), which contradicts (2.2). Assume that Case 3 holds. Recalling that r(x ′′′ )α is nonincreasing, we have r1/α(s)x ′′′ (s) ≤ r1/α(t)x ′′′ (t), s ≥ t ≥ t1. ISSN 1562-3076. Нелiнiйнi коливання, 2013, т . 16, N◦ 3 328 C. ZHANG, T. LI, S. H. SAKER Dividing the above inequality by r1/α(s) and integrating the resulting inequality from t to l, we obtain x ′′ (l) ≤ x ′′ (t) + r1/α(t)x ′′′ (t) l∫ t r−1/α(s) ds. Letting l → ∞, we get x ′′ (t) ≥ −r1/α(t)x′′′(t)R(t). (2.12) Integrating (2.12) from t to∞, we have −x′(t) ≥ ∞∫ t −r1/α(s)x′′′(s)R(s) ds ≥ −r1/α(t)x′′′(t) ∞∫ t R(s) ds. (2.13) Integrating (2.13) from t to∞, we get x(t) ≥ ∞∫ t −r1/α(u)x′′′(u) ∞∫ u R(s) ds du ≥ −r1/α(t)x′′′(t) ∞∫ t ∞∫ u R(s) ds du. (2.14) We define ϕ(t) := r(t)(x ′′′ )α(t) xα(t) , t ≥ t1. (2.15) Then ϕ(t) < 0, for t ≥ t1, and by (2.13), we have that ϕ ′ (t) = (r(x ′′′ )α) ′ (t) xα(t) − αr(t)(x ′′′ )α(t)x ′ (t) xα+1(t) ≤ ≤ −q(t)x α(τ(t)) xα(t) − αr α+1 α (t)(x ′′′ )α+1(t) xα+1(t) ∞∫ t R(s) ds. (2.16) Hence by (2.15) and (2.16), we obtain ϕ ′ (t) ≤ −q(t)− αϕ α+1 α (t) ∞∫ t R(s) ds. (2.17) From (2.14), we get ϕ(t)  ∞∫ t ∞∫ u R(s) ds du α ≥ −1. (2.18) ISSN 1562-3076. Нелiнiйнi коливання, 2013, т . 16, N◦ 3 OSCILLATION OF FOURTH-ORDER DELAY DIFFERENTIAL EQUATIONS 329 Multiplying (2.17) by (∫ ∞ t ∫ ∞ u R(s) ds du )α and integrating the resulting inequality from t1 to t, we have  ∞∫ t ∞∫ u R(s) ds du α ϕ(t)−  ∞∫ t1 ∞∫ u R(s) ds du α ϕ(t1)+ + α t∫ t1 ∞∫ s R(v) dv  ∞∫ s ∞∫ u R(v) dv du α−1 ϕ(s) ds+ + t∫ t1 q(s)  ∞∫ s ∞∫ u R(v) dv du α ds+ + α t∫ t1 ϕ α+1 α (s)  ∞∫ s ∞∫ u R(v) dv du α ∞∫ s R(v) dv ds ≤ 0. Set B := ∞∫ s R(v) dv  ∞∫ s ∞∫ u R(v) dv du α−1 , and A :=  ∞∫ s ∞∫ u R(v) dv du α ∞∫ s R(v) dv, y := −ϕ(s). Using the inequality −By +Ay α+1 α ≥ − αα (α+ 1)α+1 Bα+1 Aα , A,B > 0, (2.19) we have ∞∫ s R(v) dv  ∞∫ s ∞∫ u R(v) dv du α−1 ϕ(s) + ϕ α+1 α (s)  ∞∫ s ∞∫ u R(v) dv du α ∞∫ s R(v) dv ≥ ≥ − αα (α+ 1)α+1 ∫∞ s R(v) dv∫∞ s ∫∞ u R(v) dv du . ISSN 1562-3076. Нелiнiйнi коливання, 2013, т . 16, N◦ 3 330 C. ZHANG, T. LI, S. H. SAKER Hence, we obtain by (2.18) that t∫ t1 q(s)  ∞∫ s ∞∫ u R(v) dv du α − αα+1 (α+ 1)α+1 ∫∞ s R(v) dv∫∞ s ∫∞ u R(v) dv du  ds ≤ ≤  ∞∫ t1 ∞∫ u R(s) ds du α ϕ(t1) + 1. This is a contradiction to (2.3). Assume that Case 4 holds. In view of the proof of Case 3, we have (2.12). On the other hand, by Lemma 2.1, we get x(t) ≥ k 2 t2x ′′ (t) (2.20) for every k ∈ (0, 1) and for all sufficiently large t. Now define φ(t) := r(t)(x ′′′ )α(t) (x′′)α(t) , t ≥ t1. (2.21) Then φ(t) < 0 for t ≥ t1, and by (2.20) and (2.21), we get that φ ′ (t) = −q(t) xα(τ(t)) (x′′(τ(t)))α (x ′′ (τ(t)))α (x′′)α(t) − α φ α+1 α (t) r 1 α (t) ≤ −q(t) ( k 2 τ2(t) )α − αφ α+1 α (t) r 1 α (t) . (2.22) Multiplying the above inequality by Rα(t) and integrating the resulting inequality from t1 to t, we have Rα(t)φ(t)−Rα(t1)φ(t1) + α t∫ t1 r−1/α(s)Rα−1(s)φ(s) ds ≤ ≤ − t∫ t1 q(s) ( k 2 τ2(s) )α Rα(s) ds− α t∫ t1 φ(α+1)/α(s) r1/α(s) Rα(s) ds. Set B := r−1/α(s)Rα−1(s), A := Rα(s)/r1/α(s), and y := −φ(s). Using the inequality (2.19) and (2.12), we have, for every k ∈ (0, 1) and for all sufficiently large t, t∫ t1 [ q(s) ( k 2 τ2(s) )α Rα(s)− αα+1 (α+ 1)α+1 1 R(s)r1/α(s) ] ds ≤ Rα(t1)φ(t1) + 1. This is a contradiction to (2.4). Theorem 2.1 is proved. ISSN 1562-3076. Нелiнiйнi коливання, 2013, т . 16, N◦ 3 OSCILLATION OF FOURTH-ORDER DELAY DIFFERENTIAL EQUATIONS 331 It is well known (see [8]) that the differential equation (a(t)(x ′ (t))α) ′ + q(t)xα(t) = 0, (2.23) where α > 0 is a ratio of odd positive integers, a, q ∈ C([t0,∞),R+) is nonoscillatory if and only if there exist a number T ≥ t0 and a function v ∈ C1([T,∞),R) which satisfies the inequality v ′ (t) + αa−1/α(t)(v(t))(1+α)/α + q(t) ≤ 0, on [T,∞). In the following, we compare the oscillatory behavior of equation (1.1) with second-order half-linear equations of type (2.23). For the oscillation of equation (2.23), there are many results; see e.g., [1, 3 – 5, 17, 18, 20, 21] which include Hille and Nehari type, Philos type, etc. Theorem 2.2. Let (H1), (H2), and (1.3) hold. Assume that the equation( r(t) t2α (x ′ (t))α )′ + q(t) ( k1τ 2(t) 2t2 )α xα(t) = 0 (2.24) is oscillatory for some constant k1 ∈ (0, 1), the equation x ′′ (t) + x(t) ∞∫ t  1 r(ϑ) ∞∫ ϑ q(s) ( τ2(s) s2 )α ds  1 α dϑ = 0 (2.25) is oscillatory, and the equation ∞∫ t R(s) ds −α (x′(t))α  ′ + q(t)xα(t) = 0 (2.26) is oscillatory, and the equation( r(t)(x ′ (t))α )′ + q(t) ( k2 2 τ2(t) )α xα(t) = 0 (2.27) is oscillatory for some constant k2 ∈ (0, 1). Then every solution of (1.1) is oscillatory. Proof. Proceeding as in the proof of Theorem 2.1, we have (2.9), (2.11), (2.17), and (2.22). Letting ρ(t) = 1 in (2.9), we have ω ′ (t) + αkt2 2(r(t)) 1 α ω α+1 α (t) + q(t) ( τ2(t) t2 )α ≤ 0 for every constant k ∈ (0, 1). Then we can see that equation (2.24) is nonoscillatory for every constant k1 ∈ (0, 1), which is a contradiction. Letting θ(t) = 1 in (2.11), we have ξ ′ (t) + ξ2(t) + ∞∫ t  1 r(ϑ) ∞∫ ϑ q(s) ( τ2(s) s2 )α ds  1 α dϑ ≤ 0. ISSN 1562-3076. Нелiнiйнi коливання, 2013, т . 16, N◦ 3 332 C. ZHANG, T. LI, S. H. SAKER Then equation (2.25) is nonoscillatory, which is a contradiction. From (2.17), we have ϕ ′ (t) + αϕ α+1 α (t) ∞∫ t R(s) ds+ q(t) ≤ 0. Then we can find that equation (2.26) is nonoscillatory, which is a contradiction. From (2.22), we have φ ′ (t) + α φ α+1 α (t) r 1 α (t) + q(t) ( k 2 τ2(t) )α ≤ 0 for every constant k ∈ (0, 1). Then we can see that equation (2.27) is nonoscillatory for every constant k2 ∈ (0, 1), which is a contradiction. Theorem 2.2 is proved. It is well known (see [18]) that if ∞∫ t0 1 a(t) dt = ∞, and lim inf t→∞  t∫ t0 1 a(s) ds  ∞∫ t q(s) ds > 1 4 , then equation (2.23) with α = 1 is oscillatory. Also, it is well known (see [20], Theorem 3.3) that if ∞∫ t0 1 a(t) dt < ∞, and lim inf t→∞  ∞∫ t 1 a(s) ds −1 ∞∫ t  ∞∫ s 1 a(v) dv 2 q(s) ds > 1 4 , then equation (2.23) with α = 1 is oscillatory. Based on the above results and Theorem 2.2, we can easily obtain the following Hille and Nehari type oscillation criteria for (1.1) when α = 1. Theorem 2.3. Let α = 1, (H1), (H2), and (1.3) hold. Assume that ∞∫ t0 t2 r(t) dt = ∞, and lim inf t→∞  t∫ t0 s2 r(s) ds  ∞∫ t q(s) τ2(s) s2 ds > 1 2k1 for some constant k1 ∈ (0, 1), and lim inf t→∞ t ∞∫ t ∞∫ η 1 r(ϑ) ∞∫ ϑ q(s) τ2(s) s2 ds dϑ dη > 1 4 , (2.28) and ∞∫ t0 ∞∫ t R(s) ds dt = ∞, and lim inf t→∞  t∫ t0 ∞∫ s R(v) dv ds  ∞∫ t q(s) ds > 1 4 , ISSN 1562-3076. Нелiнiйнi коливання, 2013, т . 16, N◦ 3 OSCILLATION OF FOURTH-ORDER DELAY DIFFERENTIAL EQUATIONS 333 and lim inf t→∞  ∞∫ t 1 r(s) ds −1 ∞∫ t  ∞∫ s 1 r(v) dv 2 q(s)τ2(s) ds > 1 2k2 (2.29) for some constant k2 ∈ (0, 1). Then every solution of (1.1) with α = 1 is oscillatory. Theorem 2.4. Let α = 1, (H1), (H2), (1.3), and (2.28) hold. Assume that ∞∫ t0 t2 r(t) dt < ∞, lim inf t→∞  ∞∫ t s2 r(s) ds −1 ∞∫ t  ∞∫ s v2 r(v) dv 2 q(s) τ2(s) s2 ds > 1 2k1 for some constant k1 ∈ (0, 1), and ∞∫ t0 ∞∫ t R(s) ds dt < ∞, lim inf t→∞  ∞∫ t ∞∫ s R(v) dv ds −1 ∞∫ t  ∞∫ s ∞∫ u R(v) dv du 2 q(s) ds > 1 4 , and (2.29) holds for some constant k2 ∈ (0, 1). Then every solution of (1.1) with α = 1 is oscillatory. 3. Examples. In this section, we give two examples to illustrate the main results. Example 3.1. Consider the differential equation( t5x ′′′ (t) )′ + βtx(t) = 0, t ≥ 1. (3.1) Here β > 0 is a constant. Let α = 1, r(t) = t5, q(t) = βt, τ(t) = t. Then, we have R(t) = 1 4t4 , ∞∫ s R(v) dv = 1 12s3 , ∞∫ s ∞∫ u R(v) dv du = 1 24s2 . Letting ρ(t) = θ(t) = 1, then we have that (2.1) and (2.2) are satisfied. By calculating, we see that (2.3) and (2.4) hold when β > 12. Hence by Theorem 2.1, every solution of (3.1) is oscillatory if β > 12. However, results of [22] cannot give this conclusion. ISSN 1562-3076. Нелiнiйнi коливання, 2013, т . 16, N◦ 3 334 C. ZHANG, T. LI, S. H. SAKER Example 3.2. Consider the delay differential equation ( etx ′′′ (t) )′ + 2 √ 10 et+arcsin √ 10 10 x ( t− arcsin √ 10 10 ) = 0, t ≥ 1. (3.2) It is easy to see that every solution of (3.2) is oscillatory due to Theorem 2.1. One such soluti- on is x(t) = et sin t. However, [22] (Corollary 2.1) implies that (3.2) may exist nonoscillatory solutions x which satisfy limt→∞ x(t) = 0. Hence our results supplement and improve those in [22]. 4. Acknowledgements. The second author would like to express his gratitude to Professors Ravi P. Agarwal and Martin Bohner for their selfless guidance. 1. Agarwal R. P., Bohner M., Li W.-T. Nonoscillation and oscillation: theory for functional differential equations // Monogr. and Textbooks in Pure and Appl. Math. — New York: Marcel Dekker Inc., 2004. — 267. 2. Agarwal R. P., Grace S. R., Manojlovic J. V. Oscillation criteria for certain fourth order nonlinear functional differential equations // Math. Comput. Modelling. — 2006. — 44. — P. 163 – 187. 3. Agarwal R. P., Grace S. R., O’Regan D. Oscillation theory for difference and functional differential equati- ons. — Dordrecht: Kluwer Acad. Publ., 2000. 4. Agarwal R. P., Grace S. R., O’Regan D. Oscillation theory for second order linear, half-linear, superlinear and sublinear dynamic equations. — Dordrecht: Kluwer Acad. Publ., 2002. 5. Agarwal R. P., Grace S. R., O’Regan D. Oscillation theory for second order dynamic equations // Ser. Math. Analysis and Appl. — London: Taylor and Francis Ltd., 2003. — 5. 6. Agarwal R. P., Grace S. R., O’Regan D. Oscillation criteria for certain nth order differential equations with deviating arguments // J. Math. Anal. and Appl. — 2001. — 262. — P. 601 – 622. 7. Agarwal R. P., Grace S. R., O’Regan D. The oscillation of certain higher-order functional differential equati- ons // Math. Comput. Modelling. — 2003. — 37. — P. 705 – 728. 8. Agarwal R. P., Shieh S. L., Yeh C. C. Oscillation criteria for second order retarded differential equations // Math. Comput. Modelling. — 1997. — 26. — P. 1 – 11. 9. Baculı́ková B., Džurina J. Oscillation of third-order nonlinear differential equations // Appl. Math. Lett. — 2011. — 24. — P. 466 – 470. 10. Grace S. R., Agarwal R. P., Graef J. R. Oscillation theorems for fourth order functional differential equations // J. Appl. Math. Computing. — 2009. — 30. — P. 75 – 88. 11. Kamo K. I., Usami H. Oscillation theorems for fourth order quasilinear ordinary differential equations // Stud. Sci. Math. hung. — 2002. — 39. — P. 385 – 406. 12. Kamo K. I., Usami H. Nonlinear oscillations of fourth order quasilinear ordinary differential equations // Acta Math. hung. — 2011. — 132. — P. 207 – 222. 13. Kiguradze I. T., Chanturiya T. A. Asymptotic properties of solutions of nonatunomous ordinary differential equations. — Dordrecht: Kluwer Acad. Publ., 1993. 14. Kusano T., Manojlović J., Tanigawa T. Sharp oscillation criteria for a class of fourth order nonlinear differenti- al equations // Rocky Mountain J. Math. — 2011. — 41. — P. 249 – 274. 15. Ladde G. S., Lakshmikantham V., Zhang B. G. Oscillation theory of differential equations with deviating arguments. — New York: Marcel Dekker, 1987. 16. Li T., Zhang C., Baculı́ková B., Džurina J. On the oscillation of third-order quasi-linear delay differential equations // Tatra Mt. Math. Publ. — 2011. — 48. — P. 117 – 123. 17. Manojlović J. Oscillation criteria for second-order half-linear differential equations // Math. Comput. Model- ling. — 1999. — 30. — P. 109 – 119. ISSN 1562-3076. Нелiнiйнi коливання, 2013, т . 16, N◦ 3 OSCILLATION OF FOURTH-ORDER DELAY DIFFERENTIAL EQUATIONS 335 18. Nehari Z. Oscillation criteria for second-order linear differential equations // Trans. Amer. Math. Soc. — 1957. — 85. — P. 428 – 445. 19. Philos Ch. G. A new criterion for the oscillatory and asymptotic behavior of delay differential equations // Bull. Acad. Pol. Sci., Sér. Sci. Math. — 1981. — 39. — P. 61 – 64. 20. Řehák P. How the constants in Hille – Nehari theorems depend on time scales // Adv. Difference Equat. — 2006. — 2006. — P. 1 – 15. 21. Saker S. H. Oscillation theory of delay differential and difference equations. — Second and third orders. — Germany: Verlag Dr Müller, 2010. 22. Zhang C., Li T., Sun B., Thandapani E. On the oscillation of higher-order half-linear delay differential equati- ons // Appl. Math. Lett. — 2011. — 24. — P. 1618 – 1621. Received 17.12.11 ISSN 1562-3076. Нелiнiйнi коливання, 2013, т . 16, N◦ 3