Определение частот и форм собственных колебаний жидкости в составных резервуарах
Розвинуто варiацiйний метод розв’язання спектральної задачi про вiльнi коливання рiдини в осесиметричному резервуарi складної геометрiї, що поставлена з позицiй методу спряження. Отримано узагальнений функцiонал, для якого умови спряження на сумiжнiй частинi введених пiдобластей є природними граничн...
Gespeichert in:
Datum: | 2015 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | Russian |
Veröffentlicht: |
Інститут математики НАН України
2015
|
Schriftenreihe: | Нелінійні коливання |
Online Zugang: | http://dspace.nbuv.gov.ua/handle/123456789/177137 |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Zitieren: | Определение частот и форм собственных колебаний жидкости в составных резервуарах / Ю.В. Троценко // Нелінійні коливання. — 2015. — Т. 18, № 1. — С. 120-132 — Бібліогр.: 7 назв. — рос. |
Institution
Digital Library of Periodicals of National Academy of Sciences of UkraineZusammenfassung: | Розвинуто варiацiйний метод розв’язання спектральної задачi про вiльнi коливання рiдини в осесиметричному резервуарi складної геометрiї, що поставлена з позицiй методу спряження. Отримано узагальнений функцiонал, для якого умови спряження на сумiжнiй частинi введених пiдобластей є природними граничними умовами. За допомогою методу Трефтца розв’язання вихiдної задачi зведено до розв’язання алгебраїчної задачi невеликої розмiрностi. Наведено результати розрахункiв, якi демонструють ефективнiсть запропонованого пiдходу. |
---|